Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-sbnf Structured version   Visualization version   Unicode version

Theorem bj-sbnf 32828
Description: Move non-free predicate in and out of substitution; see sbal 2462 and sbex 2463. (Contributed by BJ, 2-May-2019.)
Assertion
Ref Expression
bj-sbnf  |-  ( [ z  /  y ] F/ x ph  <->  F/ x [ z  /  y ] ph )
Distinct variable groups:    x, y    x, z
Allowed substitution hints:    ph( x, y, z)

Proof of Theorem bj-sbnf
StepHypRef Expression
1 sbim 2395 . . . 4  |-  ( [ z  /  y ] ( ph  ->  A. x ph )  <->  ( [ z  /  y ] ph  ->  [ z  /  y ] A. x ph )
)
2 sbal 2462 . . . . 5  |-  ( [ z  /  y ] A. x ph  <->  A. x [ z  /  y ] ph )
32imbi2i 326 . . . 4  |-  ( ( [ z  /  y ] ph  ->  [ z  /  y ] A. x ph )  <->  ( [
z  /  y ]
ph  ->  A. x [ z  /  y ] ph ) )
41, 3bitri 264 . . 3  |-  ( [ z  /  y ] ( ph  ->  A. x ph )  <->  ( [ z  /  y ] ph  ->  A. x [ z  /  y ] ph ) )
54albii 1747 . 2  |-  ( A. x [ z  /  y ] ( ph  ->  A. x ph )  <->  A. x
( [ z  / 
y ] ph  ->  A. x [ z  / 
y ] ph )
)
6 nf5 2116 . . . 4  |-  ( F/ x ph  <->  A. x
( ph  ->  A. x ph ) )
76sbbii 1887 . . 3  |-  ( [ z  /  y ] F/ x ph  <->  [ z  /  y ] A. x ( ph  ->  A. x ph ) )
8 sbal 2462 . . 3  |-  ( [ z  /  y ] A. x ( ph  ->  A. x ph )  <->  A. x [ z  / 
y ] ( ph  ->  A. x ph )
)
97, 8bitri 264 . 2  |-  ( [ z  /  y ] F/ x ph  <->  A. x [ z  /  y ] ( ph  ->  A. x ph ) )
10 nf5 2116 . 2  |-  ( F/ x [ z  / 
y ] ph  <->  A. x
( [ z  / 
y ] ph  ->  A. x [ z  / 
y ] ph )
)
115, 9, 103bitr4i 292 1  |-  ( [ z  /  y ] F/ x ph  <->  F/ x [ z  /  y ] ph )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196   A.wal 1481   F/wnf 1708   [wsb 1880
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881
This theorem is referenced by:  bj-nfcf  32920
  Copyright terms: Public domain W3C validator