Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-ssb1a Structured version   Visualization version   Unicode version

Theorem bj-ssb1a 32632
Description: One direction of a simplified definition of substitution in case of disjoint variables. See bj-ssb1 32633 for the biconditional, which requires ax-11 2034. (Contributed by BJ, 22-Dec-2020.)
Assertion
Ref Expression
bj-ssb1a  |-  ( A. x ( x  =  t  ->  ph )  -> [ t/ x]b ph )
Distinct variable group:    x, t
Allowed substitution hints:    ph( x, t)

Proof of Theorem bj-ssb1a
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 ax-1 6 . . . . . 6  |-  ( ( x  =  t  ->  ph )  ->  ( E. y  y  =  t  ->  ( x  =  t  ->  ph ) ) )
2 19.23v 1902 . . . . . 6  |-  ( A. y ( y  =  t  ->  ( x  =  t  ->  ph )
)  <->  ( E. y 
y  =  t  -> 
( x  =  t  ->  ph ) ) )
31, 2sylibr 224 . . . . 5  |-  ( ( x  =  t  ->  ph )  ->  A. y
( y  =  t  ->  ( x  =  t  ->  ph ) ) )
4 equequ2 1953 . . . . . . . 8  |-  ( y  =  t  ->  (
x  =  y  <->  x  =  t ) )
54imbi1d 331 . . . . . . 7  |-  ( y  =  t  ->  (
( x  =  y  ->  ph )  <->  ( x  =  t  ->  ph )
) )
65pm5.74i 260 . . . . . 6  |-  ( ( y  =  t  -> 
( x  =  y  ->  ph ) )  <->  ( y  =  t  ->  ( x  =  t  ->  ph )
) )
76albii 1747 . . . . 5  |-  ( A. y ( y  =  t  ->  ( x  =  y  ->  ph )
)  <->  A. y ( y  =  t  ->  (
x  =  t  ->  ph ) ) )
83, 7sylibr 224 . . . 4  |-  ( ( x  =  t  ->  ph )  ->  A. y
( y  =  t  ->  ( x  =  y  ->  ph ) ) )
98alimi 1739 . . 3  |-  ( A. x ( x  =  t  ->  ph )  ->  A. x A. y ( y  =  t  -> 
( x  =  y  ->  ph ) ) )
10 bj-ssblem2 32631 . . 3  |-  ( A. x A. y ( y  =  t  ->  (
x  =  y  ->  ph ) )  ->  A. y A. x ( y  =  t  ->  ( x  =  y  ->  ph )
) )
11 stdpc5v 1867 . . . 4  |-  ( A. x ( y  =  t  ->  ( x  =  y  ->  ph )
)  ->  ( y  =  t  ->  A. x
( x  =  y  ->  ph ) ) )
1211alimi 1739 . . 3  |-  ( A. y A. x ( y  =  t  ->  (
x  =  y  ->  ph ) )  ->  A. y
( y  =  t  ->  A. x ( x  =  y  ->  ph )
) )
139, 10, 123syl 18 . 2  |-  ( A. x ( x  =  t  ->  ph )  ->  A. y ( y  =  t  ->  A. x
( x  =  y  ->  ph ) ) )
14 df-ssb 32620 . 2  |-  ([ t/ x]b ph  <->  A. y ( y  =  t  ->  A. x
( x  =  y  ->  ph ) ) )
1513, 14sylibr 224 1  |-  ( A. x ( x  =  t  ->  ph )  -> [ t/ x]b ph )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4   A.wal 1481   E.wex 1704  [wssb 32619
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935
This theorem depends on definitions:  df-bi 197  df-an 386  df-ex 1705  df-ssb 32620
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator