Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-ssb1 Structured version   Visualization version   Unicode version

Theorem bj-ssb1 32633
Description: A simplified definition of substitution in case of disjoint variables. See bj-ssb1a 32632 for the backward implication, which does not require ax-11 2034 (note that here, the version of ax-11 2034 with disjoint setvar metavariables would suffice). Compare sb6 2429. (Contributed by BJ, 22-Dec-2020.)
Assertion
Ref Expression
bj-ssb1  |-  ([ t/ x]b ph  <->  A. x ( x  =  t  ->  ph )
)
Distinct variable group:    x, t
Allowed substitution hints:    ph( x, t)

Proof of Theorem bj-ssb1
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 19.21v 1868 . . 3  |-  ( A. x ( y  =  t  ->  ( x  =  y  ->  ph )
)  <->  ( y  =  t  ->  A. x
( x  =  y  ->  ph ) ) )
21albii 1747 . 2  |-  ( A. y A. x ( y  =  t  ->  (
x  =  y  ->  ph ) )  <->  A. y
( y  =  t  ->  A. x ( x  =  y  ->  ph )
) )
3 19.23v 1902 . . . . 5  |-  ( A. y ( y  =  t  ->  ( x  =  t  ->  ph )
)  <->  ( E. y 
y  =  t  -> 
( x  =  t  ->  ph ) ) )
4 equequ2 1953 . . . . . . . 8  |-  ( y  =  t  ->  (
x  =  y  <->  x  =  t ) )
54imbi1d 331 . . . . . . 7  |-  ( y  =  t  ->  (
( x  =  y  ->  ph )  <->  ( x  =  t  ->  ph )
) )
65pm5.74i 260 . . . . . 6  |-  ( ( y  =  t  -> 
( x  =  y  ->  ph ) )  <->  ( y  =  t  ->  ( x  =  t  ->  ph )
) )
76albii 1747 . . . . 5  |-  ( A. y ( y  =  t  ->  ( x  =  y  ->  ph )
)  <->  A. y ( y  =  t  ->  (
x  =  t  ->  ph ) ) )
8 ax6ev 1890 . . . . . 6  |-  E. y 
y  =  t
98a1bi 352 . . . . 5  |-  ( ( x  =  t  ->  ph )  <->  ( E. y 
y  =  t  -> 
( x  =  t  ->  ph ) ) )
103, 7, 93bitr4ri 293 . . . 4  |-  ( ( x  =  t  ->  ph )  <->  A. y ( y  =  t  ->  (
x  =  y  ->  ph ) ) )
1110albii 1747 . . 3  |-  ( A. x ( x  =  t  ->  ph )  <->  A. x A. y ( y  =  t  ->  ( x  =  y  ->  ph )
) )
12 alcom 2037 . . 3  |-  ( A. x A. y ( y  =  t  ->  (
x  =  y  ->  ph ) )  <->  A. y A. x ( y  =  t  ->  ( x  =  y  ->  ph )
) )
1311, 12bitri 264 . 2  |-  ( A. x ( x  =  t  ->  ph )  <->  A. y A. x ( y  =  t  ->  ( x  =  y  ->  ph )
) )
14 df-ssb 32620 . 2  |-  ([ t/ x]b ph  <->  A. y ( y  =  t  ->  A. x
( x  =  y  ->  ph ) ) )
152, 13, 143bitr4ri 293 1  |-  ([ t/ x]b ph  <->  A. x ( x  =  t  ->  ph )
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196   A.wal 1481   E.wex 1704  [wssb 32619
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-11 2034
This theorem depends on definitions:  df-bi 197  df-an 386  df-ex 1705  df-ssb 32620
This theorem is referenced by:  bj-ax12ssb  32635  bj-ssbssblem  32649  bj-ssbcom3lem  32650
  Copyright terms: Public domain W3C validator