![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 19.23v | Structured version Visualization version Unicode version |
Description: Version of 19.23 2080 with a dv condition instead of a non-freeness hypothesis. (Contributed by NM, 28-Jun-1998.) Reduce dependencies on axioms. (Revised by Wolf Lammen, 11-Jan-2020.) |
Ref | Expression |
---|---|
19.23v |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exim 1761 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 19.9v 1896 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | syl6ib 241 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | ax-5 1839 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
5 | 4 | imim2i 16 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
6 | 19.38 1766 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
7 | 5, 6 | syl 17 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
8 | 3, 7 | impbii 199 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 |
This theorem depends on definitions: df-bi 197 df-ex 1705 |
This theorem is referenced by: 19.23vv 1903 pm11.53v 1906 equsalvw 1931 2mo2 2550 euind 3393 reuind 3411 unissb 4469 disjor 4634 dftr2 4754 ssrelrel 5220 cotrg 5507 dffun2 5898 fununi 5964 dff13 6512 dffi2 8329 aceq2 8942 psgnunilem4 17917 metcld 23104 metcld2 23105 isch2 28080 disjorf 29392 funcnv5mpt 29469 bnj1052 31043 bnj1030 31055 dfon2lem8 31695 bj-ssbeq 32627 bj-ssb0 32628 bj-ssb1a 32632 bj-ssb1 32633 bj-ssbequ2 32643 bj-ssbid2ALT 32646 ineleq 34119 elmapintrab 37882 elinintrab 37883 undmrnresiss 37910 elintima 37945 relexp0eq 37993 dfhe3 38069 pm10.52 38564 truniALT 38751 tpid3gVD 39077 truniALTVD 39114 onfrALTVD 39127 unisnALT 39162 |
Copyright terms: Public domain | W3C validator |