Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-ssbequ2 Structured version   Visualization version   Unicode version

Theorem bj-ssbequ2 32643
Description: Note that ax-12 2047 is used only via sp 2053. See sbequ2 1882 and stdpc7 1958. (Contributed by BJ, 22-Dec-2020.)
Assertion
Ref Expression
bj-ssbequ2  |-  ( x  =  t  ->  ([
t/ x]b ph  ->  ph ) )

Proof of Theorem bj-ssbequ2
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 df-ssb 32620 . . 3  |-  ([ t/ x]b ph  <->  A. y ( y  =  t  ->  A. x
( x  =  y  ->  ph ) ) )
2 sp 2053 . . . . . 6  |-  ( A. x ( x  =  y  ->  ph )  -> 
( x  =  y  ->  ph ) )
32imim2i 16 . . . . 5  |-  ( ( y  =  t  ->  A. x ( x  =  y  ->  ph ) )  ->  ( y  =  t  ->  ( x  =  y  ->  ph )
) )
43alimi 1739 . . . 4  |-  ( A. y ( y  =  t  ->  A. x
( x  =  y  ->  ph ) )  ->  A. y ( y  =  t  ->  ( x  =  y  ->  ph )
) )
5 pm3.31 461 . . . . 5  |-  ( ( y  =  t  -> 
( x  =  y  ->  ph ) )  -> 
( ( y  =  t  /\  x  =  y )  ->  ph )
)
65alimi 1739 . . . 4  |-  ( A. y ( y  =  t  ->  ( x  =  y  ->  ph )
)  ->  A. y
( ( y  =  t  /\  x  =  y )  ->  ph )
)
7 19.23v 1902 . . . . 5  |-  ( A. y ( ( y  =  t  /\  x  =  y )  ->  ph )  <->  ( E. y
( y  =  t  /\  x  =  y )  ->  ph ) )
8 equviniva 1960 . . . . . . 7  |-  ( x  =  t  ->  E. y
( x  =  y  /\  t  =  y ) )
9 biid 251 . . . . . . . . . . . 12  |-  ( x  =  y  <->  x  =  y )
10 equcom 1945 . . . . . . . . . . . 12  |-  ( t  =  y  <->  y  =  t )
119, 10anbi12ci 734 . . . . . . . . . . 11  |-  ( ( x  =  y  /\  t  =  y )  <->  ( y  =  t  /\  x  =  y )
)
1211biimpi 206 . . . . . . . . . 10  |-  ( ( x  =  y  /\  t  =  y )  ->  ( y  =  t  /\  x  =  y ) )
1312eximi 1762 . . . . . . . . 9  |-  ( E. y ( x  =  y  /\  t  =  y )  ->  E. y
( y  =  t  /\  x  =  y ) )
14 pm3.35 611 . . . . . . . . 9  |-  ( ( E. y ( y  =  t  /\  x  =  y )  /\  ( E. y ( y  =  t  /\  x  =  y )  ->  ph ) )  ->  ph )
1513, 14sylan 488 . . . . . . . 8  |-  ( ( E. y ( x  =  y  /\  t  =  y )  /\  ( E. y ( y  =  t  /\  x  =  y )  ->  ph ) )  ->  ph )
1615ancoms 469 . . . . . . 7  |-  ( ( ( E. y ( y  =  t  /\  x  =  y )  ->  ph )  /\  E. y ( x  =  y  /\  t  =  y ) )  ->  ph )
178, 16sylan2 491 . . . . . 6  |-  ( ( ( E. y ( y  =  t  /\  x  =  y )  ->  ph )  /\  x  =  t )  ->  ph )
1817ex 450 . . . . 5  |-  ( ( E. y ( y  =  t  /\  x  =  y )  ->  ph )  ->  ( x  =  t  ->  ph )
)
197, 18sylbi 207 . . . 4  |-  ( A. y ( ( y  =  t  /\  x  =  y )  ->  ph )  ->  ( x  =  t  ->  ph )
)
204, 6, 193syl 18 . . 3  |-  ( A. y ( y  =  t  ->  A. x
( x  =  y  ->  ph ) )  -> 
( x  =  t  ->  ph ) )
211, 20sylbi 207 . 2  |-  ([ t/ x]b ph  ->  ( x  =  t  ->  ph )
)
2221com12 32 1  |-  ( x  =  t  ->  ([
t/ x]b ph  ->  ph ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384   A.wal 1481   E.wex 1704  [wssb 32619
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-12 2047
This theorem depends on definitions:  df-bi 197  df-an 386  df-ex 1705  df-ssb 32620
This theorem is referenced by:  bj-ssbid2  32645
  Copyright terms: Public domain W3C validator