Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1019 Structured version   Visualization version   Unicode version

Theorem bnj1019 30850
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Assertion
Ref Expression
bnj1019  |-  ( E. p ( th  /\  ch  /\  ta  /\  et ) 
<->  ( th  /\  ch  /\  et  /\  E. p ta ) )
Distinct variable groups:    ch, p    et, p    th, p
Allowed substitution hint:    ta( p)

Proof of Theorem bnj1019
StepHypRef Expression
1 19.42v 1918 . 2  |-  ( E. p ( ( th 
/\  ch  /\  et )  /\  ta )  <->  ( ( th  /\  ch  /\  et )  /\  E. p ta ) )
2 bnj258 30774 . . 3  |-  ( ( th  /\  ch  /\  ta  /\  et )  <->  ( ( th  /\  ch  /\  et )  /\  ta ) )
32exbii 1774 . 2  |-  ( E. p ( th  /\  ch  /\  ta  /\  et ) 
<->  E. p ( ( th  /\  ch  /\  et )  /\  ta )
)
4 df-bnj17 30753 . 2  |-  ( ( th  /\  ch  /\  et  /\  E. p ta )  <->  ( ( th 
/\  ch  /\  et )  /\  E. p ta ) )
51, 3, 43bitr4i 292 1  |-  ( E. p ( th  /\  ch  /\  ta  /\  et ) 
<->  ( th  /\  ch  /\  et  /\  E. p ta ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 196    /\ wa 384    /\ w3a 1037   E.wex 1704    /\ w-bnj17 30752
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888
This theorem depends on definitions:  df-bi 197  df-an 386  df-3an 1039  df-ex 1705  df-bnj17 30753
This theorem is referenced by:  bnj1018  31032  bnj1020  31033  bnj1021  31034
  Copyright terms: Public domain W3C validator