Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1021 Structured version   Visualization version   Unicode version

Theorem bnj1021 31034
Description: Technical lemma for bnj69 31078. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1021.1  |-  ( ph  <->  ( f `  (/) )  = 
pred ( X ,  A ,  R )
)
bnj1021.2  |-  ( ps  <->  A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) )
bnj1021.3  |-  ( ch  <->  ( n  e.  D  /\  f  Fn  n  /\  ph 
/\  ps ) )
bnj1021.4  |-  ( th  <->  ( R  FrSe  A  /\  X  e.  A  /\  y  e.  trCl ( X ,  A ,  R
)  /\  z  e.  pred ( y ,  A ,  R ) ) )
bnj1021.5  |-  ( ta  <->  ( m  e.  om  /\  n  =  suc  m  /\  p  =  suc  n ) )
bnj1021.6  |-  ( et  <->  ( i  e.  n  /\  y  e.  ( f `  i ) ) )
bnj1021.13  |-  D  =  ( om  \  { (/)
} )
bnj1021.14  |-  B  =  { f  |  E. n  e.  D  (
f  Fn  n  /\  ph 
/\  ps ) }
Assertion
Ref Expression
bnj1021  |-  E. f E. n E. i E. m ( th  ->  ( th  /\  ch  /\  et  /\  E. p ta ) )
Distinct variable groups:    A, f,
i, n, y    D, i    R, f, i, n, y    f, X, i, n, y    ch, m, p    et, m, p    th, f,
i, n    ph, i    m, n, th, p
Allowed substitution hints:    ph( y, z, f, m, n, p)    ps( y, z, f, i, m, n, p)    ch( y, z, f, i, n)    th( y, z)    ta( y,
z, f, i, m, n, p)    et( y,
z, f, i, n)    A( z, m, p)    B( y, z, f, i, m, n, p)    D( y,
z, f, m, n, p)    R( z, m, p)    X( z, m, p)

Proof of Theorem bnj1021
StepHypRef Expression
1 bnj1021.1 . . . 4  |-  ( ph  <->  ( f `  (/) )  = 
pred ( X ,  A ,  R )
)
2 bnj1021.2 . . . 4  |-  ( ps  <->  A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) )
3 bnj1021.3 . . . 4  |-  ( ch  <->  ( n  e.  D  /\  f  Fn  n  /\  ph 
/\  ps ) )
4 bnj1021.4 . . . 4  |-  ( th  <->  ( R  FrSe  A  /\  X  e.  A  /\  y  e.  trCl ( X ,  A ,  R
)  /\  z  e.  pred ( y ,  A ,  R ) ) )
5 bnj1021.5 . . . 4  |-  ( ta  <->  ( m  e.  om  /\  n  =  suc  m  /\  p  =  suc  n ) )
6 bnj1021.6 . . . 4  |-  ( et  <->  ( i  e.  n  /\  y  e.  ( f `  i ) ) )
7 bnj1021.13 . . . 4  |-  D  =  ( om  \  { (/)
} )
8 bnj1021.14 . . . 4  |-  B  =  { f  |  E. n  e.  D  (
f  Fn  n  /\  ph 
/\  ps ) }
91, 2, 3, 4, 5, 6, 7, 8bnj996 31025 . . 3  |-  E. f E. n E. i E. m E. p ( th  ->  ( ch  /\ 
ta  /\  et )
)
10 anclb 570 . . . . . 6  |-  ( ( th  ->  ( ch  /\ 
ta  /\  et )
)  <->  ( th  ->  ( th  /\  ( ch 
/\  ta  /\  et ) ) ) )
11 bnj252 30769 . . . . . . 7  |-  ( ( th  /\  ch  /\  ta  /\  et )  <->  ( th  /\  ( ch  /\  ta  /\  et ) ) )
1211imbi2i 326 . . . . . 6  |-  ( ( th  ->  ( th  /\  ch  /\  ta  /\  et ) )  <->  ( th  ->  ( th  /\  ( ch  /\  ta  /\  et ) ) ) )
1310, 12bitr4i 267 . . . . 5  |-  ( ( th  ->  ( ch  /\ 
ta  /\  et )
)  <->  ( th  ->  ( th  /\  ch  /\  ta  /\  et ) ) )
14132exbii 1775 . . . 4  |-  ( E. m E. p ( th  ->  ( ch  /\ 
ta  /\  et )
)  <->  E. m E. p
( th  ->  ( th  /\  ch  /\  ta  /\  et ) ) )
15143exbii 1776 . . 3  |-  ( E. f E. n E. i E. m E. p
( th  ->  ( ch  /\  ta  /\  et ) )  <->  E. f E. n E. i E. m E. p ( th  ->  ( th  /\  ch  /\  ta  /\  et ) ) )
169, 15mpbi 220 . 2  |-  E. f E. n E. i E. m E. p ( th  ->  ( th  /\  ch  /\  ta  /\  et ) )
17 19.37v 1910 . . . . 5  |-  ( E. p ( th  ->  ( th  /\  ch  /\  ta  /\  et ) )  <-> 
( th  ->  E. p
( th  /\  ch  /\ 
ta  /\  et )
) )
18 bnj1019 30850 . . . . . 6  |-  ( E. p ( th  /\  ch  /\  ta  /\  et ) 
<->  ( th  /\  ch  /\  et  /\  E. p ta ) )
1918imbi2i 326 . . . . 5  |-  ( ( th  ->  E. p
( th  /\  ch  /\ 
ta  /\  et )
)  <->  ( th  ->  ( th  /\  ch  /\  et  /\  E. p ta ) ) )
2017, 19bitri 264 . . . 4  |-  ( E. p ( th  ->  ( th  /\  ch  /\  ta  /\  et ) )  <-> 
( th  ->  ( th  /\  ch  /\  et  /\  E. p ta )
) )
21202exbii 1775 . . 3  |-  ( E. i E. m E. p ( th  ->  ( th  /\  ch  /\  ta  /\  et ) )  <->  E. i E. m ( th  ->  ( th  /\  ch  /\  et  /\  E. p ta ) ) )
22212exbii 1775 . 2  |-  ( E. f E. n E. i E. m E. p
( th  ->  ( th  /\  ch  /\  ta  /\  et ) )  <->  E. f E. n E. i E. m ( th  ->  ( th  /\  ch  /\  et  /\  E. p ta ) ) )
2316, 22mpbi 220 1  |-  E. f E. n E. i E. m ( th  ->  ( th  /\  ch  /\  et  /\  E. p ta ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483   E.wex 1704    e. wcel 1990   {cab 2608   A.wral 2912   E.wrex 2913    \ cdif 3571   (/)c0 3915   {csn 4177   U_ciun 4520   suc csuc 5725    Fn wfn 5883   ` cfv 5888   omcom 7065    /\ w-bnj17 30752    predc-bnj14 30754    FrSe w-bnj15 30758    trClc-bnj18 30760
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-tr 4753  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-fn 5891  df-om 7066  df-bnj17 30753  df-bnj18 30761
This theorem is referenced by:  bnj907  31035
  Copyright terms: Public domain W3C validator