| Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj1021 | Structured version Visualization version Unicode version | ||
| Description: Technical lemma for bnj69 31078. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| bnj1021.1 |
|
| bnj1021.2 |
|
| bnj1021.3 |
|
| bnj1021.4 |
|
| bnj1021.5 |
|
| bnj1021.6 |
|
| bnj1021.13 |
|
| bnj1021.14 |
|
| Ref | Expression |
|---|---|
| bnj1021 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bnj1021.1 |
. . . 4
| |
| 2 | bnj1021.2 |
. . . 4
| |
| 3 | bnj1021.3 |
. . . 4
| |
| 4 | bnj1021.4 |
. . . 4
| |
| 5 | bnj1021.5 |
. . . 4
| |
| 6 | bnj1021.6 |
. . . 4
| |
| 7 | bnj1021.13 |
. . . 4
| |
| 8 | bnj1021.14 |
. . . 4
| |
| 9 | 1, 2, 3, 4, 5, 6, 7, 8 | bnj996 31025 |
. . 3
|
| 10 | anclb 570 |
. . . . . 6
| |
| 11 | bnj252 30769 |
. . . . . . 7
| |
| 12 | 11 | imbi2i 326 |
. . . . . 6
|
| 13 | 10, 12 | bitr4i 267 |
. . . . 5
|
| 14 | 13 | 2exbii 1775 |
. . . 4
|
| 15 | 14 | 3exbii 1776 |
. . 3
|
| 16 | 9, 15 | mpbi 220 |
. 2
|
| 17 | 19.37v 1910 |
. . . . 5
| |
| 18 | bnj1019 30850 |
. . . . . 6
| |
| 19 | 18 | imbi2i 326 |
. . . . 5
|
| 20 | 17, 19 | bitri 264 |
. . . 4
|
| 21 | 20 | 2exbii 1775 |
. . 3
|
| 22 | 21 | 2exbii 1775 |
. 2
|
| 23 | 16, 22 | mpbi 220 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-tr 4753 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-fn 5891 df-om 7066 df-bnj17 30753 df-bnj18 30761 |
| This theorem is referenced by: bnj907 31035 |
| Copyright terms: Public domain | W3C validator |