| Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj1018 | Structured version Visualization version Unicode version | ||
| Description: Technical lemma for bnj69 31078. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| bnj1018.1 |
|
| bnj1018.2 |
|
| bnj1018.3 |
|
| bnj1018.4 |
|
| bnj1018.5 |
|
| bnj1018.7 |
|
| bnj1018.8 |
|
| bnj1018.9 |
|
| bnj1018.10 |
|
| bnj1018.11 |
|
| bnj1018.12 |
|
| bnj1018.13 |
|
| bnj1018.14 |
|
| bnj1018.15 |
|
| bnj1018.16 |
|
| bnj1018.26 |
|
| bnj1018.29 |
|
| bnj1018.30 |
|
| Ref | Expression |
|---|---|
| bnj1018 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-bnj17 30753 |
. . 3
| |
| 2 | bnj258 30774 |
. . . . . . . 8
| |
| 3 | bnj1018.29 |
. . . . . . . 8
| |
| 4 | 2, 3 | sylbir 225 |
. . . . . . 7
|
| 5 | 4 | ex 450 |
. . . . . 6
|
| 6 | 5 | eximdv 1846 |
. . . . 5
|
| 7 | bnj1018.3 |
. . . . . 6
| |
| 8 | bnj1018.9 |
. . . . . 6
| |
| 9 | bnj1018.12 |
. . . . . 6
| |
| 10 | bnj1018.14 |
. . . . . 6
| |
| 11 | bnj1018.16 |
. . . . . 6
| |
| 12 | 7, 8, 9, 10, 11 | bnj985 31023 |
. . . . 5
|
| 13 | 6, 12 | syl6ibr 242 |
. . . 4
|
| 14 | 13 | imp 445 |
. . 3
|
| 15 | 1, 14 | sylbi 207 |
. 2
|
| 16 | bnj1019 30850 |
. . 3
| |
| 17 | bnj1018.30 |
. . . . . 6
| |
| 18 | 17 | simp3d 1075 |
. . . . 5
|
| 19 | bnj1018.26 |
. . . . . . 7
| |
| 20 | 19 | bnj1235 30875 |
. . . . . 6
|
| 21 | fndm 5990 |
. . . . . 6
| |
| 22 | 3, 20, 21 | 3syl 18 |
. . . . 5
|
| 23 | 18, 22 | eleqtrrd 2704 |
. . . 4
|
| 24 | 23 | exlimiv 1858 |
. . 3
|
| 25 | 16, 24 | sylbir 225 |
. 2
|
| 26 | bnj1018.1 |
. . 3
| |
| 27 | bnj1018.2 |
. . 3
| |
| 28 | bnj1018.13 |
. . 3
| |
| 29 | 11 | bnj918 30836 |
. . 3
|
| 30 | vex 3203 |
. . . 4
| |
| 31 | 30 | sucex 7011 |
. . 3
|
| 32 | 26, 27, 28, 10, 29, 31 | bnj1015 31031 |
. 2
|
| 33 | 15, 25, 32 | syl2anc 693 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-dm 5124 df-suc 5729 df-iota 5851 df-fn 5891 df-fv 5896 df-bnj17 30753 df-bnj18 30761 |
| This theorem is referenced by: bnj1020 31033 |
| Copyright terms: Public domain | W3C validator |