Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj222 Structured version   Visualization version   Unicode version

Theorem bnj222 30953
Description: Technical lemma for bnj229 30954. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypothesis
Ref Expression
bnj222.1  |-  ( ps  <->  A. i  e.  om  ( suc  i  e.  N  ->  ( F `  suc  i )  =  U_ y  e.  ( F `  i )  pred (
y ,  A ,  R ) ) )
Assertion
Ref Expression
bnj222  |-  ( ps  <->  A. m  e.  om  ( suc  m  e.  N  -> 
( F `  suc  m )  =  U_ y  e.  ( F `  m )  pred (
y ,  A ,  R ) ) )
Distinct variable groups:    A, i, m    i, F, m, y   
i, N, m    R, i, m
Allowed substitution hints:    ps( y, i, m)    A( y)    R( y)    N( y)

Proof of Theorem bnj222
StepHypRef Expression
1 bnj222.1 . 2  |-  ( ps  <->  A. i  e.  om  ( suc  i  e.  N  ->  ( F `  suc  i )  =  U_ y  e.  ( F `  i )  pred (
y ,  A ,  R ) ) )
2 suceq 5790 . . . . 5  |-  ( i  =  m  ->  suc  i  =  suc  m )
32eleq1d 2686 . . . 4  |-  ( i  =  m  ->  ( suc  i  e.  N  <->  suc  m  e.  N ) )
42fveq2d 6195 . . . . 5  |-  ( i  =  m  ->  ( F `  suc  i )  =  ( F `  suc  m ) )
5 fveq2 6191 . . . . . 6  |-  ( i  =  m  ->  ( F `  i )  =  ( F `  m ) )
65bnj1113 30856 . . . . 5  |-  ( i  =  m  ->  U_ y  e.  ( F `  i
)  pred ( y ,  A ,  R )  =  U_ y  e.  ( F `  m
)  pred ( y ,  A ,  R ) )
74, 6eqeq12d 2637 . . . 4  |-  ( i  =  m  ->  (
( F `  suc  i )  =  U_ y  e.  ( F `  i )  pred (
y ,  A ,  R )  <->  ( F `  suc  m )  = 
U_ y  e.  ( F `  m ) 
pred ( y ,  A ,  R ) ) )
83, 7imbi12d 334 . . 3  |-  ( i  =  m  ->  (
( suc  i  e.  N  ->  ( F `  suc  i )  =  U_ y  e.  ( F `  i )  pred (
y ,  A ,  R ) )  <->  ( suc  m  e.  N  ->  ( F `  suc  m
)  =  U_ y  e.  ( F `  m
)  pred ( y ,  A ,  R ) ) ) )
98cbvralv 3171 . 2  |-  ( A. i  e.  om  ( suc  i  e.  N  ->  ( F `  suc  i )  =  U_ y  e.  ( F `  i )  pred (
y ,  A ,  R ) )  <->  A. m  e.  om  ( suc  m  e.  N  ->  ( F `
 suc  m )  =  U_ y  e.  ( F `  m ) 
pred ( y ,  A ,  R ) ) )
101, 9bitri 264 1  |-  ( ps  <->  A. m  e.  om  ( suc  m  e.  N  -> 
( F `  suc  m )  =  U_ y  e.  ( F `  m )  pred (
y ,  A ,  R ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    = wceq 1483    e. wcel 1990   A.wral 2912   U_ciun 4520   suc csuc 5725   ` cfv 5888   omcom 7065    predc-bnj14 30754
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-suc 5729  df-iota 5851  df-fv 5896
This theorem is referenced by:  bnj229  30954  bnj589  30979
  Copyright terms: Public domain W3C validator