Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj956 Structured version   Visualization version   Unicode version

Theorem bnj956 30847
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypothesis
Ref Expression
bnj956.1  |-  ( A  =  B  ->  A. x  A  =  B )
Assertion
Ref Expression
bnj956  |-  ( A  =  B  ->  U_ x  e.  A  C  =  U_ x  e.  B  C
)

Proof of Theorem bnj956
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 bnj956.1 . . . 4  |-  ( A  =  B  ->  A. x  A  =  B )
2 eleq2 2690 . . . . . . 7  |-  ( A  =  B  ->  (
x  e.  A  <->  x  e.  B ) )
32anbi1d 741 . . . . . 6  |-  ( A  =  B  ->  (
( x  e.  A  /\  y  e.  C
)  <->  ( x  e.  B  /\  y  e.  C ) ) )
43alexbii 1760 . . . . 5  |-  ( A. x  A  =  B  ->  ( E. x ( x  e.  A  /\  y  e.  C )  <->  E. x ( x  e.  B  /\  y  e.  C ) ) )
5 df-rex 2918 . . . . 5  |-  ( E. x  e.  A  y  e.  C  <->  E. x
( x  e.  A  /\  y  e.  C
) )
6 df-rex 2918 . . . . 5  |-  ( E. x  e.  B  y  e.  C  <->  E. x
( x  e.  B  /\  y  e.  C
) )
74, 5, 63bitr4g 303 . . . 4  |-  ( A. x  A  =  B  ->  ( E. x  e.  A  y  e.  C  <->  E. x  e.  B  y  e.  C ) )
81, 7syl 17 . . 3  |-  ( A  =  B  ->  ( E. x  e.  A  y  e.  C  <->  E. x  e.  B  y  e.  C ) )
98abbidv 2741 . 2  |-  ( A  =  B  ->  { y  |  E. x  e.  A  y  e.  C }  =  { y  |  E. x  e.  B  y  e.  C }
)
10 df-iun 4522 . 2  |-  U_ x  e.  A  C  =  { y  |  E. x  e.  A  y  e.  C }
11 df-iun 4522 . 2  |-  U_ x  e.  B  C  =  { y  |  E. x  e.  B  y  e.  C }
129, 10, 113eqtr4g 2681 1  |-  ( A  =  B  ->  U_ x  e.  A  C  =  U_ x  e.  B  C
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384   A.wal 1481    = wceq 1483   E.wex 1704    e. wcel 1990   {cab 2608   E.wrex 2913   U_ciun 4520
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-rex 2918  df-iun 4522
This theorem is referenced by:  bnj1316  30891  bnj953  31009  bnj1000  31011  bnj966  31014
  Copyright terms: Public domain W3C validator