Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj953 Structured version   Visualization version   Unicode version

Theorem bnj953 31009
Description: Technical lemma for bnj69 31078. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj953.1  |-  ( ps  <->  A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) )
bnj953.2  |-  ( ( G `  i )  =  ( f `  i )  ->  A. y
( G `  i
)  =  ( f `
 i ) )
Assertion
Ref Expression
bnj953  |-  ( ( ( G `  i
)  =  ( f `
 i )  /\  ( G `  suc  i
)  =  ( f `
 suc  i )  /\  ( i  e.  om  /\ 
suc  i  e.  n
)  /\  ps )  ->  ( G `  suc  i )  =  U_ y  e.  ( G `  i )  pred (
y ,  A ,  R ) )

Proof of Theorem bnj953
StepHypRef Expression
1 bnj312 30778 . . 3  |-  ( ( ( G `  i
)  =  ( f `
 i )  /\  ( G `  suc  i
)  =  ( f `
 suc  i )  /\  ( i  e.  om  /\ 
suc  i  e.  n
)  /\  ps )  <->  ( ( G `  suc  i )  =  ( f `  suc  i
)  /\  ( G `  i )  =  ( f `  i )  /\  ( i  e. 
om  /\  suc  i  e.  n )  /\  ps ) )
2 bnj251 30768 . . 3  |-  ( ( ( G `  suc  i )  =  ( f `  suc  i
)  /\  ( G `  i )  =  ( f `  i )  /\  ( i  e. 
om  /\  suc  i  e.  n )  /\  ps ) 
<->  ( ( G `  suc  i )  =  ( f `  suc  i
)  /\  ( ( G `  i )  =  ( f `  i )  /\  (
( i  e.  om  /\ 
suc  i  e.  n
)  /\  ps )
) ) )
31, 2bitri 264 . 2  |-  ( ( ( G `  i
)  =  ( f `
 i )  /\  ( G `  suc  i
)  =  ( f `
 suc  i )  /\  ( i  e.  om  /\ 
suc  i  e.  n
)  /\  ps )  <->  ( ( G `  suc  i )  =  ( f `  suc  i
)  /\  ( ( G `  i )  =  ( f `  i )  /\  (
( i  e.  om  /\ 
suc  i  e.  n
)  /\  ps )
) ) )
4 bnj953.1 . . . . . 6  |-  ( ps  <->  A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) )
54bnj115 30791 . . . . 5  |-  ( ps  <->  A. i ( ( i  e.  om  /\  suc  i  e.  n )  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) )
6 sp 2053 . . . . . 6  |-  ( A. i ( ( i  e.  om  /\  suc  i  e.  n )  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) )  -> 
( ( i  e. 
om  /\  suc  i  e.  n )  ->  (
f `  suc  i )  =  U_ y  e.  ( f `  i
)  pred ( y ,  A ,  R ) ) )
76impcom 446 . . . . 5  |-  ( ( ( i  e.  om  /\ 
suc  i  e.  n
)  /\  A. i
( ( i  e. 
om  /\  suc  i  e.  n )  ->  (
f `  suc  i )  =  U_ y  e.  ( f `  i
)  pred ( y ,  A ,  R ) ) )  ->  (
f `  suc  i )  =  U_ y  e.  ( f `  i
)  pred ( y ,  A ,  R ) )
85, 7sylan2b 492 . . . 4  |-  ( ( ( i  e.  om  /\ 
suc  i  e.  n
)  /\  ps )  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) )
9 bnj953.2 . . . . 5  |-  ( ( G `  i )  =  ( f `  i )  ->  A. y
( G `  i
)  =  ( f `
 i ) )
109bnj956 30847 . . . 4  |-  ( ( G `  i )  =  ( f `  i )  ->  U_ y  e.  ( G `  i
)  pred ( y ,  A ,  R )  =  U_ y  e.  ( f `  i
)  pred ( y ,  A ,  R ) )
11 eqtr3 2643 . . . 4  |-  ( ( ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R )  /\  U_ y  e.  ( G `  i )  pred (
y ,  A ,  R )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) )  -> 
( f `  suc  i )  =  U_ y  e.  ( G `  i )  pred (
y ,  A ,  R ) )
128, 10, 11syl2anr 495 . . 3  |-  ( ( ( G `  i
)  =  ( f `
 i )  /\  ( ( i  e. 
om  /\  suc  i  e.  n )  /\  ps ) )  ->  (
f `  suc  i )  =  U_ y  e.  ( G `  i
)  pred ( y ,  A ,  R ) )
13 eqtr 2641 . . 3  |-  ( ( ( G `  suc  i )  =  ( f `  suc  i
)  /\  ( f `  suc  i )  = 
U_ y  e.  ( G `  i ) 
pred ( y ,  A ,  R ) )  ->  ( G `  suc  i )  = 
U_ y  e.  ( G `  i ) 
pred ( y ,  A ,  R ) )
1412, 13sylan2 491 . 2  |-  ( ( ( G `  suc  i )  =  ( f `  suc  i
)  /\  ( ( G `  i )  =  ( f `  i )  /\  (
( i  e.  om  /\ 
suc  i  e.  n
)  /\  ps )
) )  ->  ( G `  suc  i )  =  U_ y  e.  ( G `  i
)  pred ( y ,  A ,  R ) )
153, 14sylbi 207 1  |-  ( ( ( G `  i
)  =  ( f `
 i )  /\  ( G `  suc  i
)  =  ( f `
 suc  i )  /\  ( i  e.  om  /\ 
suc  i  e.  n
)  /\  ps )  ->  ( G `  suc  i )  =  U_ y  e.  ( G `  i )  pred (
y ,  A ,  R ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384   A.wal 1481    = wceq 1483    e. wcel 1990   A.wral 2912   U_ciun 4520   suc csuc 5725   ` cfv 5888   omcom 7065    /\ w-bnj17 30752    predc-bnj14 30754
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-ral 2917  df-rex 2918  df-iun 4522  df-bnj17 30753
This theorem is referenced by:  bnj967  31015
  Copyright terms: Public domain W3C validator