MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brne0 Structured version   Visualization version   Unicode version

Theorem brne0 4702
Description: If two sets are in a binary relation, the relation cannot be empty. (Contributed by Alexander van der Vekens, 7-Jul-2018.)
Assertion
Ref Expression
brne0  |-  ( A R B  ->  R  =/=  (/) )

Proof of Theorem brne0
StepHypRef Expression
1 df-br 4654 . 2  |-  ( A R B  <->  <. A ,  B >.  e.  R )
2 ne0i 3921 . 2  |-  ( <. A ,  B >.  e.  R  ->  R  =/=  (/) )
31, 2sylbi 207 1  |-  ( A R B  ->  R  =/=  (/) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    e. wcel 1990    =/= wne 2794   (/)c0 3915   <.cop 4183   class class class wbr 4653
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-v 3202  df-dif 3577  df-nul 3916  df-br 4654
This theorem is referenced by:  brfvopabrbr  6279  bropfvvvvlem  7256  brfvimex  38324  brovmptimex  38325  clsneibex  38400  neicvgbex  38410
  Copyright terms: Public domain W3C validator