MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brfvopabrbr Structured version   Visualization version   Unicode version

Theorem brfvopabrbr 6279
Description: The binary relation of a function value which is an ordered-pair class abstraction of a restricted binary relation is the restricted binary relation. The first hypothesis can often be obtained by using fvmptopab 6697. (Contributed by AV, 29-Oct-2021.)
Hypotheses
Ref Expression
brfvopabrbr.1  |-  ( A `
 Z )  =  { <. x ,  y
>.  |  ( x
( B `  Z
) y  /\  ph ) }
brfvopabrbr.2  |-  ( ( x  =  X  /\  y  =  Y )  ->  ( ph  <->  ps )
)
brfvopabrbr.3  |-  Rel  ( B `  Z )
Assertion
Ref Expression
brfvopabrbr  |-  ( X ( A `  Z
) Y  <->  ( X
( B `  Z
) Y  /\  ps ) )
Distinct variable groups:    x, B, y    x, X, y    x, Y, y    x, Z, y    ps, x, y
Allowed substitution hints:    ph( x, y)    A( x, y)

Proof of Theorem brfvopabrbr
StepHypRef Expression
1 brne0 4702 . . . 4  |-  ( X ( A `  Z
) Y  ->  ( A `  Z )  =/=  (/) )
2 fvprc 6185 . . . . 5  |-  ( -.  Z  e.  _V  ->  ( A `  Z )  =  (/) )
32necon1ai 2821 . . . 4  |-  ( ( A `  Z )  =/=  (/)  ->  Z  e.  _V )
41, 3syl 17 . . 3  |-  ( X ( A `  Z
) Y  ->  Z  e.  _V )
5 brfvopabrbr.1 . . . . 5  |-  ( A `
 Z )  =  { <. x ,  y
>.  |  ( x
( B `  Z
) y  /\  ph ) }
65relopabi 5245 . . . 4  |-  Rel  ( A `  Z )
76brrelexi 5158 . . 3  |-  ( X ( A `  Z
) Y  ->  X  e.  _V )
86brrelex2i 5159 . . 3  |-  ( X ( A `  Z
) Y  ->  Y  e.  _V )
94, 7, 83jca 1242 . 2  |-  ( X ( A `  Z
) Y  ->  ( Z  e.  _V  /\  X  e.  _V  /\  Y  e. 
_V ) )
10 brne0 4702 . . . . 5  |-  ( X ( B `  Z
) Y  ->  ( B `  Z )  =/=  (/) )
11 fvprc 6185 . . . . . 6  |-  ( -.  Z  e.  _V  ->  ( B `  Z )  =  (/) )
1211necon1ai 2821 . . . . 5  |-  ( ( B `  Z )  =/=  (/)  ->  Z  e.  _V )
1310, 12syl 17 . . . 4  |-  ( X ( B `  Z
) Y  ->  Z  e.  _V )
14 brfvopabrbr.3 . . . . 5  |-  Rel  ( B `  Z )
1514brrelexi 5158 . . . 4  |-  ( X ( B `  Z
) Y  ->  X  e.  _V )
1614brrelex2i 5159 . . . 4  |-  ( X ( B `  Z
) Y  ->  Y  e.  _V )
1713, 15, 163jca 1242 . . 3  |-  ( X ( B `  Z
) Y  ->  ( Z  e.  _V  /\  X  e.  _V  /\  Y  e. 
_V ) )
1817adantr 481 . 2  |-  ( ( X ( B `  Z ) Y  /\  ps )  ->  ( Z  e.  _V  /\  X  e.  _V  /\  Y  e. 
_V ) )
195a1i 11 . . 3  |-  ( Z  e.  _V  ->  ( A `  Z )  =  { <. x ,  y
>.  |  ( x
( B `  Z
) y  /\  ph ) } )
20 brfvopabrbr.2 . . 3  |-  ( ( x  =  X  /\  y  =  Y )  ->  ( ph  <->  ps )
)
2119, 20rbropap 5016 . 2  |-  ( ( Z  e.  _V  /\  X  e.  _V  /\  Y  e.  _V )  ->  ( X ( A `  Z ) Y  <->  ( X
( B `  Z
) Y  /\  ps ) ) )
229, 18, 21pm5.21nii 368 1  |-  ( X ( A `  Z
) Y  <->  ( X
( B `  Z
) Y  /\  ps ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   _Vcvv 3200   (/)c0 3915   class class class wbr 4653   {copab 4712   Rel wrel 5119   ` cfv 5888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-xp 5120  df-rel 5121  df-iota 5851  df-fv 5896
This theorem is referenced by:  istrl  26593  ispth  26619  isspth  26620  isclwlk  26669  iscrct  26685  iscycl  26686  iseupth  27061
  Copyright terms: Public domain W3C validator