Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  clsneibex Structured version   Visualization version   Unicode version

Theorem clsneibex 38400
Description: If (pseudo-)closure and (pseudo-)neighborhood functions are related by the composite operator,  H, then the base set exists. (Contributed by RP, 4-Jun-2021.)
Hypotheses
Ref Expression
clsneibex.d  |-  D  =  ( P `  B
)
clsneibex.h  |-  H  =  ( F  o.  D
)
clsneibex.r  |-  ( ph  ->  K H N )
Assertion
Ref Expression
clsneibex  |-  ( ph  ->  B  e.  _V )

Proof of Theorem clsneibex
StepHypRef Expression
1 clsneibex.h . . . . 5  |-  H  =  ( F  o.  D
)
2 clsneibex.d . . . . . 6  |-  D  =  ( P `  B
)
32coeq2i 5282 . . . . 5  |-  ( F  o.  D )  =  ( F  o.  ( P `  B )
)
41, 3eqtri 2644 . . . 4  |-  H  =  ( F  o.  ( P `  B )
)
54a1i 11 . . 3  |-  ( ph  ->  H  =  ( F  o.  ( P `  B ) ) )
6 clsneibex.r . . 3  |-  ( ph  ->  K H N )
75, 6breqdi 4668 . 2  |-  ( ph  ->  K ( F  o.  ( P `  B ) ) N )
8 brne0 4702 . 2  |-  ( K ( F  o.  ( P `  B )
) N  ->  ( F  o.  ( P `  B ) )  =/=  (/) )
9 fvprc 6185 . . . . . . . 8  |-  ( -.  B  e.  _V  ->  ( P `  B )  =  (/) )
109rneqd 5353 . . . . . . 7  |-  ( -.  B  e.  _V  ->  ran  ( P `  B
)  =  ran  (/) )
11 rn0 5377 . . . . . . 7  |-  ran  (/)  =  (/)
1210, 11syl6eq 2672 . . . . . 6  |-  ( -.  B  e.  _V  ->  ran  ( P `  B
)  =  (/) )
1312ineq2d 3814 . . . . 5  |-  ( -.  B  e.  _V  ->  ( dom  F  i^i  ran  ( P `  B ) )  =  ( dom 
F  i^i  (/) ) )
14 in0 3968 . . . . 5  |-  ( dom 
F  i^i  (/) )  =  (/)
1513, 14syl6eq 2672 . . . 4  |-  ( -.  B  e.  _V  ->  ( dom  F  i^i  ran  ( P `  B ) )  =  (/) )
1615coemptyd 13718 . . 3  |-  ( -.  B  e.  _V  ->  ( F  o.  ( P `
 B ) )  =  (/) )
1716necon1ai 2821 . 2  |-  ( ( F  o.  ( P `
 B ) )  =/=  (/)  ->  B  e.  _V )
187, 8, 173syl 18 1  |-  ( ph  ->  B  e.  _V )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    = wceq 1483    e. wcel 1990    =/= wne 2794   _Vcvv 3200    i^i cin 3573   (/)c0 3915   class class class wbr 4653   dom cdm 5114   ran crn 5115    o. ccom 5118   ` cfv 5888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-iota 5851  df-fv 5896
This theorem is referenced by:  clsneircomplex  38401  clsneif1o  38402  clsneicnv  38403  clsneikex  38404  clsneinex  38405  clsneiel1  38406
  Copyright terms: Public domain W3C validator