| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > bropfvvvvlem | Structured version Visualization version Unicode version | ||
| Description: Lemma for bropfvvvv 7257. (Contributed by AV, 31-Dec-2020.) (Revised by AV, 16-Jan-2021.) |
| Ref | Expression |
|---|---|
| bropfvvvv.o |
|
| bropfvvvv.oo |
|
| Ref | Expression |
|---|---|
| bropfvvvvlem |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opelxp 5146 |
. . 3
| |
| 2 | brne0 4702 |
. . . . . . 7
| |
| 3 | bropfvvvv.oo |
. . . . . . . . . . . . . 14
| |
| 4 | 3 | 3expb 1266 |
. . . . . . . . . . . . 13
|
| 5 | 4 | breqd 4664 |
. . . . . . . . . . . 12
|
| 6 | brabv 6699 |
. . . . . . . . . . . . . . 15
| |
| 7 | 6 | anim2i 593 |
. . . . . . . . . . . . . 14
|
| 8 | 7 | ex 450 |
. . . . . . . . . . . . 13
|
| 9 | 8 | adantr 481 |
. . . . . . . . . . . 12
|
| 10 | 5, 9 | sylbid 230 |
. . . . . . . . . . 11
|
| 11 | 10 | ex 450 |
. . . . . . . . . 10
|
| 12 | 11 | com23 86 |
. . . . . . . . 9
|
| 13 | 12 | a1d 25 |
. . . . . . . 8
|
| 14 | bropfvvvv.o |
. . . . . . . . . 10
| |
| 15 | 14 | fvmptndm 6308 |
. . . . . . . . 9
|
| 16 | df-ov 6653 |
. . . . . . . . . . 11
| |
| 17 | fveq1 6190 |
. . . . . . . . . . 11
| |
| 18 | 16, 17 | syl5eq 2668 |
. . . . . . . . . 10
|
| 19 | 0fv 6227 |
. . . . . . . . . 10
| |
| 20 | 18, 19 | syl6eq 2672 |
. . . . . . . . 9
|
| 21 | eqneqall 2805 |
. . . . . . . . 9
| |
| 22 | 15, 20, 21 | 3syl 18 |
. . . . . . . 8
|
| 23 | 13, 22 | pm2.61i 176 |
. . . . . . 7
|
| 24 | 2, 23 | mpcom 38 |
. . . . . 6
|
| 25 | 24 | com12 32 |
. . . . 5
|
| 26 | 25 | anc2ri 581 |
. . . 4
|
| 27 | 3anan32 1050 |
. . . 4
| |
| 28 | 26, 27 | syl6ibr 242 |
. . 3
|
| 29 | 1, 28 | sylbi 207 |
. 2
|
| 30 | 29 | imp 445 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-xp 5120 df-dm 5124 df-iota 5851 df-fv 5896 df-ov 6653 |
| This theorem is referenced by: bropfvvvv 7257 |
| Copyright terms: Public domain | W3C validator |