Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brvdif2 Structured version   Visualization version   Unicode version

Theorem brvdif2 34026
Description: Binary relation with universal complement. (Contributed by Peter Mazsa, 14-Jul-2018.)
Assertion
Ref Expression
brvdif2  |-  ( A ( _V  \  R
) B  <->  -.  <. A ,  B >.  e.  R )

Proof of Theorem brvdif2
StepHypRef Expression
1 brvdif 34025 . 2  |-  ( A ( _V  \  R
) B  <->  -.  A R B )
2 df-br 4654 . 2  |-  ( A R B  <->  <. A ,  B >.  e.  R )
31, 2xchbinx 324 1  |-  ( A ( _V  \  R
) B  <->  -.  <. A ,  B >.  e.  R )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    <-> wb 196    e. wcel 1990   _Vcvv 3200    \ cdif 3571   <.cop 4183   class class class wbr 4653
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator