MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbvrexdva2 Structured version   Visualization version   Unicode version

Theorem cbvrexdva2 3176
Description: Rule used to change the bound variable in a restricted existential quantifier with implicit substitution which also changes the quantifier domain. Deduction form. (Contributed by David Moews, 1-May-2017.)
Hypotheses
Ref Expression
cbvraldva2.1  |-  ( (
ph  /\  x  =  y )  ->  ( ps 
<->  ch ) )
cbvraldva2.2  |-  ( (
ph  /\  x  =  y )  ->  A  =  B )
Assertion
Ref Expression
cbvrexdva2  |-  ( ph  ->  ( E. x  e.  A  ps  <->  E. y  e.  B  ch )
)
Distinct variable groups:    y, A    ps, y    x, B    ch, x    ph, x, y
Allowed substitution hints:    ps( x)    ch( y)    A( x)    B( y)

Proof of Theorem cbvrexdva2
StepHypRef Expression
1 simpr 477 . . . . 5  |-  ( (
ph  /\  x  =  y )  ->  x  =  y )
2 cbvraldva2.2 . . . . 5  |-  ( (
ph  /\  x  =  y )  ->  A  =  B )
31, 2eleq12d 2695 . . . 4  |-  ( (
ph  /\  x  =  y )  ->  (
x  e.  A  <->  y  e.  B ) )
4 cbvraldva2.1 . . . 4  |-  ( (
ph  /\  x  =  y )  ->  ( ps 
<->  ch ) )
53, 4anbi12d 747 . . 3  |-  ( (
ph  /\  x  =  y )  ->  (
( x  e.  A  /\  ps )  <->  ( y  e.  B  /\  ch )
) )
65cbvexdva 2283 . 2  |-  ( ph  ->  ( E. x ( x  e.  A  /\  ps )  <->  E. y ( y  e.  B  /\  ch ) ) )
7 df-rex 2918 . 2  |-  ( E. x  e.  A  ps  <->  E. x ( x  e.  A  /\  ps )
)
8 df-rex 2918 . 2  |-  ( E. y  e.  B  ch  <->  E. y ( y  e.  B  /\  ch )
)
96, 7, 83bitr4g 303 1  |-  ( ph  ->  ( E. x  e.  A  ps  <->  E. y  e.  B  ch )
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483   E.wex 1704    e. wcel 1990   E.wrex 2913
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-an 386  df-ex 1705  df-cleq 2615  df-clel 2618  df-rex 2918
This theorem is referenced by:  cbvrexdva  3178  mreexexlemd  16304  eulerpartlemgvv  30438
  Copyright terms: Public domain W3C validator