| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mreexexlemd | Structured version Visualization version Unicode version | ||
| Description: This lemma is used to generate substitution instances of the induction hypothesis in mreexexd 16308. (Contributed by David Moews, 1-May-2017.) |
| Ref | Expression |
|---|---|
| mreexexlemd.1 |
|
| mreexexlemd.2 |
|
| mreexexlemd.3 |
|
| mreexexlemd.4 |
|
| mreexexlemd.5 |
|
| mreexexlemd.6 |
|
| mreexexlemd.7 |
|
| Ref | Expression |
|---|---|
| mreexexlemd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mreexexlemd.6 |
. 2
| |
| 2 | mreexexlemd.4 |
. 2
| |
| 3 | mreexexlemd.5 |
. 2
| |
| 4 | mreexexlemd.7 |
. . . 4
| |
| 5 | simplr 792 |
. . . . . . . . . . 11
| |
| 6 | 5 | breq1d 4663 |
. . . . . . . . . 10
|
| 7 | simpr 477 |
. . . . . . . . . . 11
| |
| 8 | 7 | breq1d 4663 |
. . . . . . . . . 10
|
| 9 | 6, 8 | orbi12d 746 |
. . . . . . . . 9
|
| 10 | simpll 790 |
. . . . . . . . . . . 12
| |
| 11 | 7, 10 | uneq12d 3768 |
. . . . . . . . . . 11
|
| 12 | 11 | fveq2d 6195 |
. . . . . . . . . 10
|
| 13 | 5, 12 | sseq12d 3634 |
. . . . . . . . 9
|
| 14 | 5, 10 | uneq12d 3768 |
. . . . . . . . . 10
|
| 15 | 14 | eleq1d 2686 |
. . . . . . . . 9
|
| 16 | 9, 13, 15 | 3anbi123d 1399 |
. . . . . . . 8
|
| 17 | simpllr 799 |
. . . . . . . . . . 11
| |
| 18 | simpr 477 |
. . . . . . . . . . 11
| |
| 19 | 17, 18 | breq12d 4666 |
. . . . . . . . . 10
|
| 20 | simplll 798 |
. . . . . . . . . . . 12
| |
| 21 | 18, 20 | uneq12d 3768 |
. . . . . . . . . . 11
|
| 22 | 21 | eleq1d 2686 |
. . . . . . . . . 10
|
| 23 | 19, 22 | anbi12d 747 |
. . . . . . . . 9
|
| 24 | simplr 792 |
. . . . . . . . . 10
| |
| 25 | 24 | pweqd 4163 |
. . . . . . . . 9
|
| 26 | 23, 25 | cbvrexdva2 3176 |
. . . . . . . 8
|
| 27 | 16, 26 | imbi12d 334 |
. . . . . . 7
|
| 28 | simpl 473 |
. . . . . . . . . 10
| |
| 29 | 28 | difeq2d 3728 |
. . . . . . . . 9
|
| 30 | 29 | pweqd 4163 |
. . . . . . . 8
|
| 31 | 30 | adantr 481 |
. . . . . . 7
|
| 32 | 27, 31 | cbvraldva2 3175 |
. . . . . 6
|
| 33 | 32, 30 | cbvraldva2 3175 |
. . . . 5
|
| 34 | 33 | cbvalv 2273 |
. . . 4
|
| 35 | 4, 34 | sylib 208 |
. . 3
|
| 36 | ssun2 3777 |
. . . . . 6
| |
| 37 | 36 | a1i 11 |
. . . . 5
|
| 38 | 3, 37 | ssexd 4805 |
. . . 4
|
| 39 | mreexexlemd.1 |
. . . . . . . . 9
| |
| 40 | difexg 4808 |
. . . . . . . . 9
| |
| 41 | 39, 40 | syl 17 |
. . . . . . . 8
|
| 42 | mreexexlemd.2 |
. . . . . . . 8
| |
| 43 | 41, 42 | sselpwd 4807 |
. . . . . . 7
|
| 44 | 43 | adantr 481 |
. . . . . 6
|
| 45 | simpr 477 |
. . . . . . . 8
| |
| 46 | 45 | difeq2d 3728 |
. . . . . . 7
|
| 47 | 46 | pweqd 4163 |
. . . . . 6
|
| 48 | 44, 47 | eleqtrrd 2704 |
. . . . 5
|
| 49 | mreexexlemd.3 |
. . . . . . . . 9
| |
| 50 | 41, 49 | sselpwd 4807 |
. . . . . . . 8
|
| 51 | 50 | ad2antrr 762 |
. . . . . . 7
|
| 52 | 47 | adantr 481 |
. . . . . . 7
|
| 53 | 51, 52 | eleqtrrd 2704 |
. . . . . 6
|
| 54 | simplr 792 |
. . . . . . . . . 10
| |
| 55 | 54 | breq1d 4663 |
. . . . . . . . 9
|
| 56 | simpr 477 |
. . . . . . . . . 10
| |
| 57 | 56 | breq1d 4663 |
. . . . . . . . 9
|
| 58 | 55, 57 | orbi12d 746 |
. . . . . . . 8
|
| 59 | simpllr 799 |
. . . . . . . . . . 11
| |
| 60 | 56, 59 | uneq12d 3768 |
. . . . . . . . . 10
|
| 61 | 60 | fveq2d 6195 |
. . . . . . . . 9
|
| 62 | 54, 61 | sseq12d 3634 |
. . . . . . . 8
|
| 63 | 54, 59 | uneq12d 3768 |
. . . . . . . . 9
|
| 64 | 63 | eleq1d 2686 |
. . . . . . . 8
|
| 65 | 58, 62, 64 | 3anbi123d 1399 |
. . . . . . 7
|
| 66 | 56 | pweqd 4163 |
. . . . . . . 8
|
| 67 | 54 | breq1d 4663 |
. . . . . . . . 9
|
| 68 | 59 | uneq2d 3767 |
. . . . . . . . . 10
|
| 69 | 68 | eleq1d 2686 |
. . . . . . . . 9
|
| 70 | 67, 69 | anbi12d 747 |
. . . . . . . 8
|
| 71 | 66, 70 | rexeqbidv 3153 |
. . . . . . 7
|
| 72 | 65, 71 | imbi12d 334 |
. . . . . 6
|
| 73 | 53, 72 | rspcdv 3312 |
. . . . 5
|
| 74 | 48, 73 | rspcimdv 3310 |
. . . 4
|
| 75 | 38, 74 | spcimdv 3290 |
. . 3
|
| 76 | 35, 75 | mpd 15 |
. 2
|
| 77 | 1, 2, 3, 76 | mp3and 1427 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-iota 5851 df-fv 5896 |
| This theorem is referenced by: mreexexlem4d 16307 mreexexd 16308 mreexexdOLD 16309 |
| Copyright terms: Public domain | W3C validator |