![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eleq12d | Structured version Visualization version Unicode version |
Description: Deduction from equality to equivalence of membership. (Contributed by NM, 31-May-1994.) |
Ref | Expression |
---|---|
eleq12d.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
eleq12d.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
eleq12d |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq12d.2 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | eleq2d 2687 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | eleq12d.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 3 | eleq1d 2686 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
5 | 2, 4 | bitrd 268 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Copyright terms: Public domain | W3C validator |