Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme31sn1c Structured version   Visualization version   Unicode version

Theorem cdleme31sn1c 35676
Description: Part of proof of Lemma E in [Crawley] p. 113. (Contributed by NM, 1-Mar-2013.)
Hypotheses
Ref Expression
cdleme31sn1c.g  |-  G  =  ( ( P  .\/  Q )  ./\  ( E  .\/  ( ( s  .\/  t )  ./\  W
) ) )
cdleme31sn1c.i  |-  I  =  ( iota_ y  e.  B  A. t  e.  A  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P  .\/  Q
) )  ->  y  =  G ) )
cdleme31sn1c.n  |-  N  =  if ( s  .<_  ( P  .\/  Q ) ,  I ,  D
)
cdleme31sn1c.y  |-  Y  =  ( ( P  .\/  Q )  ./\  ( E  .\/  ( ( R  .\/  t )  ./\  W
) ) )
cdleme31sn1c.c  |-  C  =  ( iota_ y  e.  B  A. t  e.  A  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P  .\/  Q
) )  ->  y  =  Y ) )
Assertion
Ref Expression
cdleme31sn1c  |-  ( ( R  e.  A  /\  R  .<_  ( P  .\/  Q ) )  ->  [_ R  /  s ]_ N  =  C )
Distinct variable groups:    t, s,
y, A    B, s    E, s    .\/ , s, t, y    .<_ , s, t, y    ./\ , s    P, s, t, y    Q, s, t, y    R, s, t, y    W, s
Allowed substitution hints:    B( y, t)    C( y, t, s)    D( y, t, s)    E( y, t)    G( y, t, s)    I( y, t, s)    ./\ ( y,
t)    N( y, t, s)    W( y, t)    Y( y, t, s)

Proof of Theorem cdleme31sn1c
StepHypRef Expression
1 cdleme31sn1c.i . . 3  |-  I  =  ( iota_ y  e.  B  A. t  e.  A  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P  .\/  Q
) )  ->  y  =  G ) )
2 cdleme31sn1c.n . . 3  |-  N  =  if ( s  .<_  ( P  .\/  Q ) ,  I ,  D
)
3 eqid 2622 . . 3  |-  ( iota_ y  e.  B  A. t  e.  A  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P 
.\/  Q ) )  ->  y  =  [_ R  /  s ]_ G
) )  =  (
iota_ y  e.  B  A. t  e.  A  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P  .\/  Q
) )  ->  y  =  [_ R  /  s ]_ G ) )
41, 2, 3cdleme31sn1 35669 . 2  |-  ( ( R  e.  A  /\  R  .<_  ( P  .\/  Q ) )  ->  [_ R  /  s ]_ N  =  ( iota_ y  e.  B  A. t  e.  A  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P 
.\/  Q ) )  ->  y  =  [_ R  /  s ]_ G
) ) )
5 cdleme31sn1c.g . . . . . . . . 9  |-  G  =  ( ( P  .\/  Q )  ./\  ( E  .\/  ( ( s  .\/  t )  ./\  W
) ) )
6 cdleme31sn1c.y . . . . . . . . 9  |-  Y  =  ( ( P  .\/  Q )  ./\  ( E  .\/  ( ( R  .\/  t )  ./\  W
) ) )
75, 6cdleme31se 35670 . . . . . . . 8  |-  ( R  e.  A  ->  [_ R  /  s ]_ G  =  Y )
87adantr 481 . . . . . . 7  |-  ( ( R  e.  A  /\  R  .<_  ( P  .\/  Q ) )  ->  [_ R  /  s ]_ G  =  Y )
98eqeq2d 2632 . . . . . 6  |-  ( ( R  e.  A  /\  R  .<_  ( P  .\/  Q ) )  ->  (
y  =  [_ R  /  s ]_ G  <->  y  =  Y ) )
109imbi2d 330 . . . . 5  |-  ( ( R  e.  A  /\  R  .<_  ( P  .\/  Q ) )  ->  (
( ( -.  t  .<_  W  /\  -.  t  .<_  ( P  .\/  Q
) )  ->  y  =  [_ R  /  s ]_ G )  <->  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P 
.\/  Q ) )  ->  y  =  Y ) ) )
1110ralbidv 2986 . . . 4  |-  ( ( R  e.  A  /\  R  .<_  ( P  .\/  Q ) )  ->  ( A. t  e.  A  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P  .\/  Q
) )  ->  y  =  [_ R  /  s ]_ G )  <->  A. t  e.  A  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P 
.\/  Q ) )  ->  y  =  Y ) ) )
1211riotabidv 6613 . . 3  |-  ( ( R  e.  A  /\  R  .<_  ( P  .\/  Q ) )  ->  ( iota_ y  e.  B  A. t  e.  A  (
( -.  t  .<_  W  /\  -.  t  .<_  ( P  .\/  Q ) )  ->  y  =  [_ R  /  s ]_ G ) )  =  ( iota_ y  e.  B  A. t  e.  A  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P  .\/  Q
) )  ->  y  =  Y ) ) )
13 cdleme31sn1c.c . . 3  |-  C  =  ( iota_ y  e.  B  A. t  e.  A  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P  .\/  Q
) )  ->  y  =  Y ) )
1412, 13syl6eqr 2674 . 2  |-  ( ( R  e.  A  /\  R  .<_  ( P  .\/  Q ) )  ->  ( iota_ y  e.  B  A. t  e.  A  (
( -.  t  .<_  W  /\  -.  t  .<_  ( P  .\/  Q ) )  ->  y  =  [_ R  /  s ]_ G ) )  =  C )
154, 14eqtrd 2656 1  |-  ( ( R  e.  A  /\  R  .<_  ( P  .\/  Q ) )  ->  [_ R  /  s ]_ N  =  C )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   [_csb 3533   ifcif 4086   class class class wbr 4653   iota_crio 6610  (class class class)co 6650
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-iota 5851  df-fv 5896  df-riota 6611  df-ov 6653
This theorem is referenced by:  cdlemefs32sn1aw  35702  cdleme43fsv1snlem  35708  cdleme41sn3a  35721  cdleme40m  35755  cdleme40n  35756
  Copyright terms: Public domain W3C validator