Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme40v Structured version   Visualization version   Unicode version

Theorem cdleme40v 35757
Description: Part of proof of Lemma E in [Crawley] p. 113. Change bound variables in  [_ S  /  u ]_ V (but we use  [_ R  /  u ]_ V for convenience since we have its hypotheses available) . (Contributed by NM, 18-Mar-2013.)
Hypotheses
Ref Expression
cdleme40.b  |-  B  =  ( Base `  K
)
cdleme40.l  |-  .<_  =  ( le `  K )
cdleme40.j  |-  .\/  =  ( join `  K )
cdleme40.m  |-  ./\  =  ( meet `  K )
cdleme40.a  |-  A  =  ( Atoms `  K )
cdleme40.h  |-  H  =  ( LHyp `  K
)
cdleme40.u  |-  U  =  ( ( P  .\/  Q )  ./\  W )
cdleme40.e  |-  E  =  ( ( t  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  t )  ./\  W
) ) )
cdleme40.g  |-  G  =  ( ( P  .\/  Q )  ./\  ( E  .\/  ( ( s  .\/  t )  ./\  W
) ) )
cdleme40.i  |-  I  =  ( iota_ y  e.  B  A. t  e.  A  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P  .\/  Q
) )  ->  y  =  G ) )
cdleme40.n  |-  N  =  if ( s  .<_  ( P  .\/  Q ) ,  I ,  D
)
cdleme40.d  |-  D  =  ( ( s  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  s )  ./\  W
) ) )
cdleme40r.y  |-  Y  =  ( ( u  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  u )  ./\  W
) ) )
cdleme40r.t  |-  T  =  ( ( v  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  v )  ./\  W
) ) )
cdleme40r.x  |-  X  =  ( ( P  .\/  Q )  ./\  ( T  .\/  ( ( u  .\/  v )  ./\  W
) ) )
cdleme40r.o  |-  O  =  ( iota_ z  e.  B  A. v  e.  A  ( ( -.  v  .<_  W  /\  -.  v  .<_  ( P  .\/  Q
) )  ->  z  =  X ) )
cdleme40r.v  |-  V  =  if ( u  .<_  ( P  .\/  Q ) ,  O ,  Y
)
Assertion
Ref Expression
cdleme40v  |-  ( R  e.  A  ->  [_ R  /  s ]_ N  =  [_ R  /  u ]_ V )
Distinct variable groups:    v, u, z, A    u, B, v, z    v, H, z   
u,  .\/ , v, z    v, K, z    u,  .<_ , v, z    u,  ./\ , v, z   
u, P, v, z   
u, Q, v, z   
v, R, z    u, T    v, U, z    u, W, v, z, s, t, y    A, s    y, t, A    B, s, t, y    E, s    t, H, y    .\/ , s, t, y    t, K, y    .<_ , s, t,
y    ./\ , s, t, y    P, s, t, y    Q, s, t, y    R, s, t, y    t, U, y    W, s, t, y   
y, Y    v, t,
y    T, s, t, y   
v, E, z    u, N, v    u, R    V, s    t, X, y    u, s, z, t, y
Allowed substitution hints:    D( y, z, v, u, t, s)    T( z, v)    U( u, s)    E( y, u, t)    G( y, z, v, u, t, s)    H( u, s)    I( y, z, v, u, t, s)    K( u, s)    N( y, z, t, s)    O( y, z, v, u, t, s)    V( y, z, v, u, t)    X( z, v, u, s)    Y( z, v, u, t, s)

Proof of Theorem cdleme40v
StepHypRef Expression
1 breq1 4656 . . . . 5  |-  ( s  =  u  ->  (
s  .<_  ( P  .\/  Q )  <->  u  .<_  ( P 
.\/  Q ) ) )
2 cdleme40.g . . . . . . . . . . . 12  |-  G  =  ( ( P  .\/  Q )  ./\  ( E  .\/  ( ( s  .\/  t )  ./\  W
) ) )
3 oveq1 6657 . . . . . . . . . . . . . . 15  |-  ( s  =  u  ->  (
s  .\/  t )  =  ( u  .\/  t ) )
43oveq1d 6665 . . . . . . . . . . . . . 14  |-  ( s  =  u  ->  (
( s  .\/  t
)  ./\  W )  =  ( ( u 
.\/  t )  ./\  W ) )
54oveq2d 6666 . . . . . . . . . . . . 13  |-  ( s  =  u  ->  ( E  .\/  ( ( s 
.\/  t )  ./\  W ) )  =  ( E  .\/  ( ( u  .\/  t ) 
./\  W ) ) )
65oveq2d 6666 . . . . . . . . . . . 12  |-  ( s  =  u  ->  (
( P  .\/  Q
)  ./\  ( E  .\/  ( ( s  .\/  t )  ./\  W
) ) )  =  ( ( P  .\/  Q )  ./\  ( E  .\/  ( ( u  .\/  t )  ./\  W
) ) ) )
72, 6syl5eq 2668 . . . . . . . . . . 11  |-  ( s  =  u  ->  G  =  ( ( P 
.\/  Q )  ./\  ( E  .\/  ( ( u  .\/  t ) 
./\  W ) ) ) )
87eqeq2d 2632 . . . . . . . . . 10  |-  ( s  =  u  ->  (
y  =  G  <->  y  =  ( ( P  .\/  Q )  ./\  ( E  .\/  ( ( u  .\/  t )  ./\  W
) ) ) ) )
98imbi2d 330 . . . . . . . . 9  |-  ( s  =  u  ->  (
( ( -.  t  .<_  W  /\  -.  t  .<_  ( P  .\/  Q
) )  ->  y  =  G )  <->  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P 
.\/  Q ) )  ->  y  =  ( ( P  .\/  Q
)  ./\  ( E  .\/  ( ( u  .\/  t )  ./\  W
) ) ) ) ) )
109ralbidv 2986 . . . . . . . 8  |-  ( s  =  u  ->  ( A. t  e.  A  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P  .\/  Q
) )  ->  y  =  G )  <->  A. t  e.  A  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P 
.\/  Q ) )  ->  y  =  ( ( P  .\/  Q
)  ./\  ( E  .\/  ( ( u  .\/  t )  ./\  W
) ) ) ) ) )
1110riotabidv 6613 . . . . . . 7  |-  ( s  =  u  ->  ( iota_ y  e.  B  A. t  e.  A  (
( -.  t  .<_  W  /\  -.  t  .<_  ( P  .\/  Q ) )  ->  y  =  G ) )  =  ( iota_ y  e.  B  A. t  e.  A  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P  .\/  Q
) )  ->  y  =  ( ( P 
.\/  Q )  ./\  ( E  .\/  ( ( u  .\/  t ) 
./\  W ) ) ) ) ) )
12 eqeq1 2626 . . . . . . . . . . 11  |-  ( y  =  z  ->  (
y  =  ( ( P  .\/  Q ) 
./\  ( E  .\/  ( ( u  .\/  t )  ./\  W
) ) )  <->  z  =  ( ( P  .\/  Q )  ./\  ( E  .\/  ( ( u  .\/  t )  ./\  W
) ) ) ) )
1312imbi2d 330 . . . . . . . . . 10  |-  ( y  =  z  ->  (
( ( -.  t  .<_  W  /\  -.  t  .<_  ( P  .\/  Q
) )  ->  y  =  ( ( P 
.\/  Q )  ./\  ( E  .\/  ( ( u  .\/  t ) 
./\  W ) ) ) )  <->  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P 
.\/  Q ) )  ->  z  =  ( ( P  .\/  Q
)  ./\  ( E  .\/  ( ( u  .\/  t )  ./\  W
) ) ) ) ) )
1413ralbidv 2986 . . . . . . . . 9  |-  ( y  =  z  ->  ( A. t  e.  A  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P  .\/  Q
) )  ->  y  =  ( ( P 
.\/  Q )  ./\  ( E  .\/  ( ( u  .\/  t ) 
./\  W ) ) ) )  <->  A. t  e.  A  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P 
.\/  Q ) )  ->  z  =  ( ( P  .\/  Q
)  ./\  ( E  .\/  ( ( u  .\/  t )  ./\  W
) ) ) ) ) )
15 breq1 4656 . . . . . . . . . . . . 13  |-  ( t  =  v  ->  (
t  .<_  W  <->  v  .<_  W ) )
1615notbid 308 . . . . . . . . . . . 12  |-  ( t  =  v  ->  ( -.  t  .<_  W  <->  -.  v  .<_  W ) )
17 breq1 4656 . . . . . . . . . . . . 13  |-  ( t  =  v  ->  (
t  .<_  ( P  .\/  Q )  <->  v  .<_  ( P 
.\/  Q ) ) )
1817notbid 308 . . . . . . . . . . . 12  |-  ( t  =  v  ->  ( -.  t  .<_  ( P 
.\/  Q )  <->  -.  v  .<_  ( P  .\/  Q
) ) )
1916, 18anbi12d 747 . . . . . . . . . . 11  |-  ( t  =  v  ->  (
( -.  t  .<_  W  /\  -.  t  .<_  ( P  .\/  Q ) )  <->  ( -.  v  .<_  W  /\  -.  v  .<_  ( P  .\/  Q
) ) ) )
20 oveq1 6657 . . . . . . . . . . . . . . . . 17  |-  ( t  =  v  ->  (
t  .\/  U )  =  ( v  .\/  U ) )
21 oveq2 6658 . . . . . . . . . . . . . . . . . . 19  |-  ( t  =  v  ->  ( P  .\/  t )  =  ( P  .\/  v
) )
2221oveq1d 6665 . . . . . . . . . . . . . . . . . 18  |-  ( t  =  v  ->  (
( P  .\/  t
)  ./\  W )  =  ( ( P 
.\/  v )  ./\  W ) )
2322oveq2d 6666 . . . . . . . . . . . . . . . . 17  |-  ( t  =  v  ->  ( Q  .\/  ( ( P 
.\/  t )  ./\  W ) )  =  ( Q  .\/  ( ( P  .\/  v ) 
./\  W ) ) )
2420, 23oveq12d 6668 . . . . . . . . . . . . . . . 16  |-  ( t  =  v  ->  (
( t  .\/  U
)  ./\  ( Q  .\/  ( ( P  .\/  t )  ./\  W
) ) )  =  ( ( v  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  v )  ./\  W
) ) ) )
25 cdleme40.e . . . . . . . . . . . . . . . 16  |-  E  =  ( ( t  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  t )  ./\  W
) ) )
26 cdleme40r.t . . . . . . . . . . . . . . . 16  |-  T  =  ( ( v  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  v )  ./\  W
) ) )
2724, 25, 263eqtr4g 2681 . . . . . . . . . . . . . . 15  |-  ( t  =  v  ->  E  =  T )
28 oveq2 6658 . . . . . . . . . . . . . . . 16  |-  ( t  =  v  ->  (
u  .\/  t )  =  ( u  .\/  v ) )
2928oveq1d 6665 . . . . . . . . . . . . . . 15  |-  ( t  =  v  ->  (
( u  .\/  t
)  ./\  W )  =  ( ( u 
.\/  v )  ./\  W ) )
3027, 29oveq12d 6668 . . . . . . . . . . . . . 14  |-  ( t  =  v  ->  ( E  .\/  ( ( u 
.\/  t )  ./\  W ) )  =  ( T  .\/  ( ( u  .\/  v ) 
./\  W ) ) )
3130oveq2d 6666 . . . . . . . . . . . . 13  |-  ( t  =  v  ->  (
( P  .\/  Q
)  ./\  ( E  .\/  ( ( u  .\/  t )  ./\  W
) ) )  =  ( ( P  .\/  Q )  ./\  ( T  .\/  ( ( u  .\/  v )  ./\  W
) ) ) )
32 cdleme40r.x . . . . . . . . . . . . 13  |-  X  =  ( ( P  .\/  Q )  ./\  ( T  .\/  ( ( u  .\/  v )  ./\  W
) ) )
3331, 32syl6eqr 2674 . . . . . . . . . . . 12  |-  ( t  =  v  ->  (
( P  .\/  Q
)  ./\  ( E  .\/  ( ( u  .\/  t )  ./\  W
) ) )  =  X )
3433eqeq2d 2632 . . . . . . . . . . 11  |-  ( t  =  v  ->  (
z  =  ( ( P  .\/  Q ) 
./\  ( E  .\/  ( ( u  .\/  t )  ./\  W
) ) )  <->  z  =  X ) )
3519, 34imbi12d 334 . . . . . . . . . 10  |-  ( t  =  v  ->  (
( ( -.  t  .<_  W  /\  -.  t  .<_  ( P  .\/  Q
) )  ->  z  =  ( ( P 
.\/  Q )  ./\  ( E  .\/  ( ( u  .\/  t ) 
./\  W ) ) ) )  <->  ( ( -.  v  .<_  W  /\  -.  v  .<_  ( P 
.\/  Q ) )  ->  z  =  X ) ) )
3635cbvralv 3171 . . . . . . . . 9  |-  ( A. t  e.  A  (
( -.  t  .<_  W  /\  -.  t  .<_  ( P  .\/  Q ) )  ->  z  =  ( ( P  .\/  Q )  ./\  ( E  .\/  ( ( u  .\/  t )  ./\  W
) ) ) )  <->  A. v  e.  A  ( ( -.  v  .<_  W  /\  -.  v  .<_  ( P  .\/  Q
) )  ->  z  =  X ) )
3714, 36syl6bb 276 . . . . . . . 8  |-  ( y  =  z  ->  ( A. t  e.  A  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P  .\/  Q
) )  ->  y  =  ( ( P 
.\/  Q )  ./\  ( E  .\/  ( ( u  .\/  t ) 
./\  W ) ) ) )  <->  A. v  e.  A  ( ( -.  v  .<_  W  /\  -.  v  .<_  ( P 
.\/  Q ) )  ->  z  =  X ) ) )
3837cbvriotav 6622 . . . . . . 7  |-  ( iota_ y  e.  B  A. t  e.  A  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P 
.\/  Q ) )  ->  y  =  ( ( P  .\/  Q
)  ./\  ( E  .\/  ( ( u  .\/  t )  ./\  W
) ) ) ) )  =  ( iota_ z  e.  B  A. v  e.  A  ( ( -.  v  .<_  W  /\  -.  v  .<_  ( P 
.\/  Q ) )  ->  z  =  X ) )
3911, 38syl6eq 2672 . . . . . 6  |-  ( s  =  u  ->  ( iota_ y  e.  B  A. t  e.  A  (
( -.  t  .<_  W  /\  -.  t  .<_  ( P  .\/  Q ) )  ->  y  =  G ) )  =  ( iota_ z  e.  B  A. v  e.  A  ( ( -.  v  .<_  W  /\  -.  v  .<_  ( P  .\/  Q
) )  ->  z  =  X ) ) )
40 cdleme40.i . . . . . 6  |-  I  =  ( iota_ y  e.  B  A. t  e.  A  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P  .\/  Q
) )  ->  y  =  G ) )
41 cdleme40r.o . . . . . 6  |-  O  =  ( iota_ z  e.  B  A. v  e.  A  ( ( -.  v  .<_  W  /\  -.  v  .<_  ( P  .\/  Q
) )  ->  z  =  X ) )
4239, 40, 413eqtr4g 2681 . . . . 5  |-  ( s  =  u  ->  I  =  O )
43 oveq1 6657 . . . . . . 7  |-  ( s  =  u  ->  (
s  .\/  U )  =  ( u  .\/  U ) )
44 oveq2 6658 . . . . . . . . 9  |-  ( s  =  u  ->  ( P  .\/  s )  =  ( P  .\/  u
) )
4544oveq1d 6665 . . . . . . . 8  |-  ( s  =  u  ->  (
( P  .\/  s
)  ./\  W )  =  ( ( P 
.\/  u )  ./\  W ) )
4645oveq2d 6666 . . . . . . 7  |-  ( s  =  u  ->  ( Q  .\/  ( ( P 
.\/  s )  ./\  W ) )  =  ( Q  .\/  ( ( P  .\/  u ) 
./\  W ) ) )
4743, 46oveq12d 6668 . . . . . 6  |-  ( s  =  u  ->  (
( s  .\/  U
)  ./\  ( Q  .\/  ( ( P  .\/  s )  ./\  W
) ) )  =  ( ( u  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  u )  ./\  W
) ) ) )
48 cdleme40.d . . . . . 6  |-  D  =  ( ( s  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  s )  ./\  W
) ) )
49 cdleme40r.y . . . . . 6  |-  Y  =  ( ( u  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  u )  ./\  W
) ) )
5047, 48, 493eqtr4g 2681 . . . . 5  |-  ( s  =  u  ->  D  =  Y )
511, 42, 50ifbieq12d 4113 . . . 4  |-  ( s  =  u  ->  if ( s  .<_  ( P 
.\/  Q ) ,  I ,  D )  =  if ( u 
.<_  ( P  .\/  Q
) ,  O ,  Y ) )
52 cdleme40.n . . . 4  |-  N  =  if ( s  .<_  ( P  .\/  Q ) ,  I ,  D
)
53 cdleme40r.v . . . 4  |-  V  =  if ( u  .<_  ( P  .\/  Q ) ,  O ,  Y
)
5451, 52, 533eqtr4g 2681 . . 3  |-  ( s  =  u  ->  N  =  V )
5554cbvcsbv 3539 . 2  |-  [_ R  /  s ]_ N  =  [_ R  /  u ]_ V
5655a1i 11 1  |-  ( R  e.  A  ->  [_ R  /  s ]_ N  =  [_ R  /  u ]_ V )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   [_csb 3533   ifcif 4086   class class class wbr 4653   ` cfv 5888   iota_crio 6610  (class class class)co 6650   Basecbs 15857   lecple 15948   joincjn 16944   meetcmee 16945   Atomscatm 34550   LHypclh 35270
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-iota 5851  df-fv 5896  df-riota 6611  df-ov 6653
This theorem is referenced by:  cdleme40w  35758
  Copyright terms: Public domain W3C validator