| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cleqh | Structured version Visualization version Unicode version | ||
| Description: Establish equality between classes, using bound-variable hypotheses instead of distinct variable conditions. See also cleqf 2790. (Contributed by NM, 26-May-1993.) (Proof shortened by Wolf Lammen, 14-Nov-2019.) Remove dependency on ax-13 2246. (Revised by BJ, 30-Nov-2020.) |
| Ref | Expression |
|---|---|
| cleqh.1 |
|
| cleqh.2 |
|
| Ref | Expression |
|---|---|
| cleqh |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfcleq 2616 |
. 2
| |
| 2 | nfv 1843 |
. . 3
| |
| 3 | cleqh.1 |
. . . . 5
| |
| 4 | 3 | nf5i 2024 |
. . . 4
|
| 5 | cleqh.2 |
. . . . 5
| |
| 6 | 5 | nf5i 2024 |
. . . 4
|
| 7 | 4, 6 | nfbi 1833 |
. . 3
|
| 8 | eleq1 2689 |
. . . 4
| |
| 9 | eleq1 2689 |
. . . 4
| |
| 10 | 8, 9 | bibi12d 335 |
. . 3
|
| 11 | 2, 7, 10 | cbvalv1 2175 |
. 2
|
| 12 | 1, 11 | bitr4i 267 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-cleq 2615 df-clel 2618 |
| This theorem is referenced by: abeq2 2732 abbi 2737 cleqf 2790 abeq2f 2792 bj-abeq2 32773 |
| Copyright terms: Public domain | W3C validator |