![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cleqf | Structured version Visualization version Unicode version |
Description: Establish equality between classes, using bound-variable hypotheses instead of distinct variable conditions. See also cleqh 2724. (Contributed by NM, 26-May-1993.) (Revised by Mario Carneiro, 7-Oct-2016.) (Proof shortened by Wolf Lammen, 17-Nov-2019.) |
Ref | Expression |
---|---|
cleqf.1 |
![]() ![]() ![]() ![]() |
cleqf.2 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
cleqf |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cleqf.1 |
. . 3
![]() ![]() ![]() ![]() | |
2 | 1 | nfcrii 2757 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | cleqf.2 |
. . 3
![]() ![]() ![]() ![]() | |
4 | 3 | nfcrii 2757 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
5 | 2, 4 | cleqh 2724 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-cleq 2615 df-clel 2618 df-nfc 2753 |
This theorem is referenced by: abid2f 2791 eqvf 3204 eqrd 3622 eq0f 3925 n0fOLD 3928 iunab 4566 iinab 4581 mbfposr 23419 mbfinf 23432 itg1climres 23481 bnj1366 30900 bj-rabtrALT 32927 compab 38645 dfcleqf 39255 |
Copyright terms: Public domain | W3C validator |