| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cleqf | Structured version Visualization version Unicode version | ||
| Description: Establish equality between classes, using bound-variable hypotheses instead of distinct variable conditions. See also cleqh 2724. (Contributed by NM, 26-May-1993.) (Revised by Mario Carneiro, 7-Oct-2016.) (Proof shortened by Wolf Lammen, 17-Nov-2019.) |
| Ref | Expression |
|---|---|
| cleqf.1 |
|
| cleqf.2 |
|
| Ref | Expression |
|---|---|
| cleqf |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cleqf.1 |
. . 3
| |
| 2 | 1 | nfcrii 2757 |
. 2
|
| 3 | cleqf.2 |
. . 3
| |
| 4 | 3 | nfcrii 2757 |
. 2
|
| 5 | 2, 4 | cleqh 2724 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-cleq 2615 df-clel 2618 df-nfc 2753 |
| This theorem is referenced by: abid2f 2791 eqvf 3204 eqrd 3622 eq0f 3925 n0fOLD 3928 iunab 4566 iinab 4581 mbfposr 23419 mbfinf 23432 itg1climres 23481 bnj1366 30900 bj-rabtrALT 32927 compab 38645 dfcleqf 39255 |
| Copyright terms: Public domain | W3C validator |