Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cllem0 Structured version   Visualization version   Unicode version

Theorem cllem0 37871
Description: The class of all sets with property  ph ( z ) is closed under the binary operation on sets defined in  R ( x ,  y ). (Contributed by Richard Penner, 3-Jan-2020.)
Hypotheses
Ref Expression
cllem0.v  |-  V  =  { z  |  ph }
cllem0.rex  |-  R  e.  U
cllem0.r  |-  ( z  =  R  ->  ( ph 
<->  ps ) )
cllem0.x  |-  ( z  =  x  ->  ( ph 
<->  ch ) )
cllem0.y  |-  ( z  =  y  ->  ( ph 
<->  th ) )
cllem0.closed  |-  ( ( ch  /\  th )  ->  ps )
Assertion
Ref Expression
cllem0  |-  A. x  e.  V  A. y  e.  V  R  e.  V
Distinct variable groups:    ps, z    ch, z    th, z    x, y, z    y, V    z, R
Allowed substitution hints:    ph( x, y, z)    ps( x, y)    ch( x, y)    th( x, y)    R( x, y)    U( x, y, z)    V( x, z)

Proof of Theorem cllem0
StepHypRef Expression
1 cllem0.rex . . . . . . 7  |-  R  e.  U
21elexi 3213 . . . . . 6  |-  R  e. 
_V
3 cllem0.r . . . . . 6  |-  ( z  =  R  ->  ( ph 
<->  ps ) )
4 cllem0.v . . . . . 6  |-  V  =  { z  |  ph }
52, 3, 4elab2 3354 . . . . 5  |-  ( R  e.  V  <->  ps )
65ralbii 2980 . . . 4  |-  ( A. y  e.  V  R  e.  V  <->  A. y  e.  V  ps )
76ralbii 2980 . . 3  |-  ( A. x  e.  V  A. y  e.  V  R  e.  V  <->  A. x  e.  V  A. y  e.  V  ps )
8 df-ral 2917 . . . 4  |-  ( A. y  e.  V  ps  <->  A. y ( y  e.  V  ->  ps )
)
98ralbii 2980 . . 3  |-  ( A. x  e.  V  A. y  e.  V  ps  <->  A. x  e.  V  A. y ( y  e.  V  ->  ps )
)
10 df-ral 2917 . . 3  |-  ( A. x  e.  V  A. y ( y  e.  V  ->  ps )  <->  A. x ( x  e.  V  ->  A. y
( y  e.  V  ->  ps ) ) )
117, 9, 103bitri 286 . 2  |-  ( A. x  e.  V  A. y  e.  V  R  e.  V  <->  A. x ( x  e.  V  ->  A. y
( y  e.  V  ->  ps ) ) )
12 vex 3203 . . . . . 6  |-  x  e. 
_V
13 cllem0.x . . . . . 6  |-  ( z  =  x  ->  ( ph 
<->  ch ) )
1412, 13, 4elab2 3354 . . . . 5  |-  ( x  e.  V  <->  ch )
15 vex 3203 . . . . . 6  |-  y  e. 
_V
16 cllem0.y . . . . . 6  |-  ( z  =  y  ->  ( ph 
<->  th ) )
1715, 16, 4elab2 3354 . . . . 5  |-  ( y  e.  V  <->  th )
18 cllem0.closed . . . . 5  |-  ( ( ch  /\  th )  ->  ps )
1914, 17, 18syl2anb 496 . . . 4  |-  ( ( x  e.  V  /\  y  e.  V )  ->  ps )
2019ex 450 . . 3  |-  ( x  e.  V  ->  (
y  e.  V  ->  ps ) )
2120alrimiv 1855 . 2  |-  ( x  e.  V  ->  A. y
( y  e.  V  ->  ps ) )
2211, 21mpgbir 1726 1  |-  A. x  e.  V  A. y  e.  V  R  e.  V
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384   A.wal 1481    = wceq 1483    e. wcel 1990   {cab 2608   A.wral 2912
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-v 3202
This theorem is referenced by:  superficl  37872  superuncl  37873  ssficl  37874  ssuncl  37875  ssdifcl  37876  sssymdifcl  37877  trficl  37961
  Copyright terms: Public domain W3C validator