Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  superuncl Structured version   Visualization version   Unicode version

Theorem superuncl 37873
Description: The class of all supersets of a class is closed under binary union. (Contributed by Richard Penner, 3-Jan-2020.)
Hypothesis
Ref Expression
superficl.a  |-  A  =  { z  |  B  C_  z }
Assertion
Ref Expression
superuncl  |-  A. x  e.  A  A. y  e.  A  ( x  u.  y )  e.  A
Distinct variable groups:    x, y,
z    y, A    z, B
Allowed substitution hints:    A( x, z)    B( x, y)

Proof of Theorem superuncl
StepHypRef Expression
1 superficl.a . 2  |-  A  =  { z  |  B  C_  z }
2 vex 3203 . . 3  |-  x  e. 
_V
3 vex 3203 . . 3  |-  y  e. 
_V
42, 3unex 6956 . 2  |-  ( x  u.  y )  e. 
_V
5 sseq2 3627 . 2  |-  ( z  =  ( x  u.  y )  ->  ( B  C_  z  <->  B  C_  (
x  u.  y ) ) )
6 sseq2 3627 . 2  |-  ( z  =  x  ->  ( B  C_  z  <->  B  C_  x
) )
7 sseq2 3627 . 2  |-  ( z  =  y  ->  ( B  C_  z  <->  B  C_  y
) )
8 ssun3 3778 . . 3  |-  ( B 
C_  x  ->  B  C_  ( x  u.  y
) )
98adantr 481 . 2  |-  ( ( B  C_  x  /\  B  C_  y )  ->  B  C_  ( x  u.  y ) )
101, 4, 5, 6, 7, 9cllem0 37871 1  |-  A. x  e.  A  A. y  e.  A  ( x  u.  y )  e.  A
Colors of variables: wff setvar class
Syntax hints:    = wceq 1483    e. wcel 1990   {cab 2608   A.wral 2912   _Vcvv 3200    u. cun 3572    C_ wss 3574
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-sn 4178  df-pr 4180  df-uni 4437
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator