MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwwlksndisj Structured version   Visualization version   Unicode version

Theorem clwwlksndisj 26973
Description: The sets of closed walks starting at different vertices are disjunct. (Contributed by Alexander van der Vekens, 7-Oct-2018.) (Revised by AV, 28-May-2021.)
Assertion
Ref Expression
clwwlksndisj  |- Disj  x  e.  V  { w  e.  ( N ClWWalksN  G )  |  ( w ` 
0 )  =  x }
Distinct variable groups:    x, G    x, N    x, V    x, w
Allowed substitution hints:    G( w)    N( w)    V( w)

Proof of Theorem clwwlksndisj
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 inrab 3899 . . . . 5  |-  ( { w  e.  ( N ClWWalksN  G )  |  ( w `  0 )  =  x }  i^i  { w  e.  ( N ClWWalksN  G )  |  ( w `  0 )  =  y } )  =  { w  e.  ( N ClWWalksN  G )  |  ( ( w `
 0 )  =  x  /\  ( w `
 0 )  =  y ) }
2 eqtr2 2642 . . . . . . . 8  |-  ( ( ( w `  0
)  =  x  /\  ( w `  0
)  =  y )  ->  x  =  y )
32con3i 150 . . . . . . 7  |-  ( -.  x  =  y  ->  -.  ( ( w ` 
0 )  =  x  /\  ( w ` 
0 )  =  y ) )
43ralrimivw 2967 . . . . . 6  |-  ( -.  x  =  y  ->  A. w  e.  ( N ClWWalksN  G )  -.  (
( w `  0
)  =  x  /\  ( w `  0
)  =  y ) )
5 rabeq0 3957 . . . . . 6  |-  ( { w  e.  ( N ClWWalksN  G )  |  ( ( w `  0
)  =  x  /\  ( w `  0
)  =  y ) }  =  (/)  <->  A. w  e.  ( N ClWWalksN  G )  -.  ( ( w ` 
0 )  =  x  /\  ( w ` 
0 )  =  y ) )
64, 5sylibr 224 . . . . 5  |-  ( -.  x  =  y  ->  { w  e.  ( N ClWWalksN  G )  |  ( ( w `  0
)  =  x  /\  ( w `  0
)  =  y ) }  =  (/) )
71, 6syl5eq 2668 . . . 4  |-  ( -.  x  =  y  -> 
( { w  e.  ( N ClWWalksN  G )  |  ( w ` 
0 )  =  x }  i^i  { w  e.  ( N ClWWalksN  G )  |  ( w ` 
0 )  =  y } )  =  (/) )
87orri 391 . . 3  |-  ( x  =  y  \/  ( { w  e.  ( N ClWWalksN  G )  |  ( w `  0 )  =  x }  i^i  { w  e.  ( N ClWWalksN  G )  |  ( w `  0 )  =  y } )  =  (/) )
98rgen2w 2925 . 2  |-  A. x  e.  V  A. y  e.  V  ( x  =  y  \/  ( { w  e.  ( N ClWWalksN  G )  |  ( w `  0 )  =  x }  i^i  { w  e.  ( N ClWWalksN  G )  |  ( w `  0 )  =  y } )  =  (/) )
10 eqeq2 2633 . . . 4  |-  ( x  =  y  ->  (
( w `  0
)  =  x  <->  ( w `  0 )  =  y ) )
1110rabbidv 3189 . . 3  |-  ( x  =  y  ->  { w  e.  ( N ClWWalksN  G )  |  ( w ` 
0 )  =  x }  =  { w  e.  ( N ClWWalksN  G )  |  ( w ` 
0 )  =  y } )
1211disjor 4634 . 2  |-  (Disj  x  e.  V  { w  e.  ( N ClWWalksN  G )  |  ( w ` 
0 )  =  x }  <->  A. x  e.  V  A. y  e.  V  ( x  =  y  \/  ( { w  e.  ( N ClWWalksN  G )  |  ( w ` 
0 )  =  x }  i^i  { w  e.  ( N ClWWalksN  G )  |  ( w ` 
0 )  =  y } )  =  (/) ) )
139, 12mpbir 221 1  |- Disj  x  e.  V  { w  e.  ( N ClWWalksN  G )  |  ( w ` 
0 )  =  x }
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    \/ wo 383    /\ wa 384    = wceq 1483   A.wral 2912   {crab 2916    i^i cin 3573   (/)c0 3915  Disj wdisj 4620   ` cfv 5888  (class class class)co 6650   0cc0 9936   ClWWalksN cclwwlksn 26876
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rmo 2920  df-rab 2921  df-v 3202  df-dif 3577  df-in 3581  df-nul 3916  df-disj 4621
This theorem is referenced by:  numclwwlk4  27244
  Copyright terms: Public domain W3C validator