| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > clwwlksndisj | Structured version Visualization version Unicode version | ||
| Description: The sets of closed walks starting at different vertices are disjunct. (Contributed by Alexander van der Vekens, 7-Oct-2018.) (Revised by AV, 28-May-2021.) |
| Ref | Expression |
|---|---|
| clwwlksndisj |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inrab 3899 |
. . . . 5
| |
| 2 | eqtr2 2642 |
. . . . . . . 8
| |
| 3 | 2 | con3i 150 |
. . . . . . 7
|
| 4 | 3 | ralrimivw 2967 |
. . . . . 6
|
| 5 | rabeq0 3957 |
. . . . . 6
| |
| 6 | 4, 5 | sylibr 224 |
. . . . 5
|
| 7 | 1, 6 | syl5eq 2668 |
. . . 4
|
| 8 | 7 | orri 391 |
. . 3
|
| 9 | 8 | rgen2w 2925 |
. 2
|
| 10 | eqeq2 2633 |
. . . 4
| |
| 11 | 10 | rabbidv 3189 |
. . 3
|
| 12 | 11 | disjor 4634 |
. 2
|
| 13 | 9, 12 | mpbir 221 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rmo 2920 df-rab 2921 df-v 3202 df-dif 3577 df-in 3581 df-nul 3916 df-disj 4621 |
| This theorem is referenced by: numclwwlk4 27244 |
| Copyright terms: Public domain | W3C validator |