MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwwlksndisj Structured version   Visualization version   GIF version

Theorem clwwlksndisj 26973
Description: The sets of closed walks starting at different vertices are disjunct. (Contributed by Alexander van der Vekens, 7-Oct-2018.) (Revised by AV, 28-May-2021.)
Assertion
Ref Expression
clwwlksndisj Disj 𝑥𝑉 {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑥}
Distinct variable groups:   𝑥,𝐺   𝑥,𝑁   𝑥,𝑉   𝑥,𝑤
Allowed substitution hints:   𝐺(𝑤)   𝑁(𝑤)   𝑉(𝑤)

Proof of Theorem clwwlksndisj
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 inrab 3899 . . . . 5 ({𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑥} ∩ {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑦}) = {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ ((𝑤‘0) = 𝑥 ∧ (𝑤‘0) = 𝑦)}
2 eqtr2 2642 . . . . . . . 8 (((𝑤‘0) = 𝑥 ∧ (𝑤‘0) = 𝑦) → 𝑥 = 𝑦)
32con3i 150 . . . . . . 7 𝑥 = 𝑦 → ¬ ((𝑤‘0) = 𝑥 ∧ (𝑤‘0) = 𝑦))
43ralrimivw 2967 . . . . . 6 𝑥 = 𝑦 → ∀𝑤 ∈ (𝑁 ClWWalksN 𝐺) ¬ ((𝑤‘0) = 𝑥 ∧ (𝑤‘0) = 𝑦))
5 rabeq0 3957 . . . . . 6 ({𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ ((𝑤‘0) = 𝑥 ∧ (𝑤‘0) = 𝑦)} = ∅ ↔ ∀𝑤 ∈ (𝑁 ClWWalksN 𝐺) ¬ ((𝑤‘0) = 𝑥 ∧ (𝑤‘0) = 𝑦))
64, 5sylibr 224 . . . . 5 𝑥 = 𝑦 → {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ ((𝑤‘0) = 𝑥 ∧ (𝑤‘0) = 𝑦)} = ∅)
71, 6syl5eq 2668 . . . 4 𝑥 = 𝑦 → ({𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑥} ∩ {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑦}) = ∅)
87orri 391 . . 3 (𝑥 = 𝑦 ∨ ({𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑥} ∩ {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑦}) = ∅)
98rgen2w 2925 . 2 𝑥𝑉𝑦𝑉 (𝑥 = 𝑦 ∨ ({𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑥} ∩ {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑦}) = ∅)
10 eqeq2 2633 . . . 4 (𝑥 = 𝑦 → ((𝑤‘0) = 𝑥 ↔ (𝑤‘0) = 𝑦))
1110rabbidv 3189 . . 3 (𝑥 = 𝑦 → {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑥} = {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑦})
1211disjor 4634 . 2 (Disj 𝑥𝑉 {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑥} ↔ ∀𝑥𝑉𝑦𝑉 (𝑥 = 𝑦 ∨ ({𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑥} ∩ {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑦}) = ∅))
139, 12mpbir 221 1 Disj 𝑥𝑉 {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑥}
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wo 383  wa 384   = wceq 1483  wral 2912  {crab 2916  cin 3573  c0 3915  Disj wdisj 4620  cfv 5888  (class class class)co 6650  0cc0 9936   ClWWalksN cclwwlksn 26876
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rmo 2920  df-rab 2921  df-v 3202  df-dif 3577  df-in 3581  df-nul 3916  df-disj 4621
This theorem is referenced by:  numclwwlk4  27244
  Copyright terms: Public domain W3C validator