| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > csbdm | Structured version Visualization version Unicode version | ||
| Description: Distribute proper substitution through the domain of a class. (Contributed by Alexander van der Vekens, 23-Jul-2017.) (Revised by NM, 24-Aug-2018.) |
| Ref | Expression |
|---|---|
| csbdm |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | csbab 4008 |
. . 3
| |
| 2 | sbcex2 3486 |
. . . . 5
| |
| 3 | sbcel2 3989 |
. . . . . 6
| |
| 4 | 3 | exbii 1774 |
. . . . 5
|
| 5 | 2, 4 | bitri 264 |
. . . 4
|
| 6 | 5 | abbii 2739 |
. . 3
|
| 7 | 1, 6 | eqtri 2644 |
. 2
|
| 8 | dfdm3 5310 |
. . 3
| |
| 9 | 8 | csbeq2i 3993 |
. 2
|
| 10 | dfdm3 5310 |
. 2
| |
| 11 | 7, 9, 10 | 3eqtr4i 2654 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-fal 1489 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-nul 3916 df-br 4654 df-dm 5124 |
| This theorem is referenced by: sbcfng 6042 |
| Copyright terms: Public domain | W3C validator |