HomeHome Metamath Proof Explorer
Theorem List (p. 54 of 426)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-27775)
  Hilbert Space Explorer  Hilbert Space Explorer
(27776-29300)
  Users' Mathboxes  Users' Mathboxes
(29301-42551)
 

Theorem List for Metamath Proof Explorer - 5301-5400   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremnfcnv 5301 Bound-variable hypothesis builder for converse. (Contributed by NM, 31-Jan-2004.) (Revised by Mario Carneiro, 15-Oct-2016.)
 |-  F/_ x A   =>    |-  F/_ x `' A
 
Theoremopelcnvg 5302 Ordered-pair membership in converse. (Contributed by NM, 13-May-1999.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
 |-  ( ( A  e.  C  /\  B  e.  D )  ->  ( <. A ,  B >.  e.  `' R  <->  <. B ,  A >.  e.  R ) )
 
Theorembrcnvg 5303 The converse of a binary relation swaps arguments. Theorem 11 of [Suppes] p. 61. (Contributed by NM, 10-Oct-2005.)
 |-  ( ( A  e.  C  /\  B  e.  D )  ->  ( A `' R B  <->  B R A ) )
 
Theoremopelcnv 5304 Ordered-pair membership in converse. (Contributed by NM, 13-Aug-1995.)
 |-  A  e.  _V   &    |-  B  e.  _V   =>    |-  ( <. A ,  B >.  e.  `' R  <->  <. B ,  A >.  e.  R )
 
Theorembrcnv 5305 The converse of a binary relation swaps arguments. Theorem 11 of [Suppes] p. 61. (Contributed by NM, 13-Aug-1995.)
 |-  A  e.  _V   &    |-  B  e.  _V   =>    |-  ( A `' R B 
 <->  B R A )
 
Theoremcsbcnv 5306 Move class substitution in and out of the converse of a function. Version of csbcnvgALT 5307 without a sethood antecedent but depending on more axioms. (Contributed by Thierry Arnoux, 8-Feb-2017.) (Revised by NM, 23-Aug-2018.)
 |-  `' [_ A  /  x ]_ F  =  [_ A  /  x ]_ `' F
 
TheoremcsbcnvgALT 5307 Move class substitution in and out of the converse of a function. Version of csbcnv 5306 with a sethood antecedent but depending on fewer axioms. (Contributed by Thierry Arnoux, 8-Feb-2017.) (New usage is discouraged.) (Proof modification is discouraged.)
 |-  ( A  e.  V  ->  `' [_ A  /  x ]_ F  =  [_ A  /  x ]_ `' F )
 
Theoremcnvco 5308 Distributive law of converse over class composition. Theorem 26 of [Suppes] p. 64. (Contributed by NM, 19-Mar-1998.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
 |-  `' ( A  o.  B )  =  ( `' B  o.  `' A )
 
Theoremcnvuni 5309* The converse of a class union is the (indexed) union of the converses of its members. (Contributed by NM, 11-Aug-2004.)
 |-  `' U. A  =  U_ x  e.  A  `' x
 
Theoremdfdm3 5310* Alternate definition of domain. Definition 6.5(1) of [TakeutiZaring] p. 24. (Contributed by NM, 28-Dec-1996.)
 |- 
 dom  A  =  { x  |  E. y <. x ,  y >.  e.  A }
 
Theoremdfrn2 5311* Alternate definition of range. Definition 4 of [Suppes] p. 60. (Contributed by NM, 27-Dec-1996.)
 |- 
 ran  A  =  {
 y  |  E. x  x A y }
 
Theoremdfrn3 5312* Alternate definition of range. Definition 6.5(2) of [TakeutiZaring] p. 24. (Contributed by NM, 28-Dec-1996.)
 |- 
 ran  A  =  {
 y  |  E. x <. x ,  y >.  e.  A }
 
Theoremelrn2g 5313* Membership in a range. (Contributed by Scott Fenton, 2-Feb-2011.)
 |-  ( A  e.  V  ->  ( A  e.  ran  B  <->  E. x <. x ,  A >.  e.  B ) )
 
Theoremelrng 5314* Membership in a range. (Contributed by Scott Fenton, 2-Feb-2011.)
 |-  ( A  e.  V  ->  ( A  e.  ran  B  <->  E. x  x B A ) )
 
Theoremssrelrn 5315* If a relation is a subset of a cartesian product, then for each element of the range of the relation there is an element of the first set of the cartesian product which is related to the element of the range by the relation. (Contributed by AV, 24-Oct-2020.)
 |-  ( ( R  C_  ( A  X.  B ) 
 /\  Y  e.  ran  R )  ->  E. a  e.  A  a R Y )
 
Theoremdfdm4 5316 Alternate definition of domain. (Contributed by NM, 28-Dec-1996.)
 |- 
 dom  A  =  ran  `' A
 
Theoremdfdmf 5317* Definition of domain, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 8-Mar-1995.) (Revised by Mario Carneiro, 15-Oct-2016.)
 |-  F/_ x A   &    |-  F/_ y A   =>    |-  dom  A  =  { x  |  E. y  x A y }
 
Theoremcsbdm 5318 Distribute proper substitution through the domain of a class. (Contributed by Alexander van der Vekens, 23-Jul-2017.) (Revised by NM, 24-Aug-2018.)
 |-  [_ A  /  x ]_
 dom  B  =  dom  [_ A  /  x ]_ B
 
Theoremeldmg 5319* Domain membership. Theorem 4 of [Suppes] p. 59. (Contributed by Mario Carneiro, 9-Jul-2014.)
 |-  ( A  e.  V  ->  ( A  e.  dom  B  <->  E. y  A B y ) )
 
Theoremeldm2g 5320* Domain membership. Theorem 4 of [Suppes] p. 59. (Contributed by NM, 27-Jan-1997.) (Revised by Mario Carneiro, 9-Jul-2014.)
 |-  ( A  e.  V  ->  ( A  e.  dom  B  <->  E. y <. A ,  y >.  e.  B ) )
 
Theoremeldm 5321* Membership in a domain. Theorem 4 of [Suppes] p. 59. (Contributed by NM, 2-Apr-2004.)
 |-  A  e.  _V   =>    |-  ( A  e.  dom 
 B 
 <-> 
 E. y  A B y )
 
Theoremeldm2 5322* Membership in a domain. Theorem 4 of [Suppes] p. 59. (Contributed by NM, 1-Aug-1994.)
 |-  A  e.  _V   =>    |-  ( A  e.  dom 
 B 
 <-> 
 E. y <. A ,  y >.  e.  B )
 
Theoremdmss 5323 Subset theorem for domain. (Contributed by NM, 11-Aug-1994.)
 |-  ( A  C_  B  ->  dom  A  C_  dom  B )
 
Theoremdmeq 5324 Equality theorem for domain. (Contributed by NM, 11-Aug-1994.)
 |-  ( A  =  B  ->  dom  A  =  dom  B )
 
Theoremdmeqi 5325 Equality inference for domain. (Contributed by NM, 4-Mar-2004.)
 |-  A  =  B   =>    |-  dom  A  =  dom  B
 
Theoremdmeqd 5326 Equality deduction for domain. (Contributed by NM, 4-Mar-2004.)
 |-  ( ph  ->  A  =  B )   =>    |-  ( ph  ->  dom  A  =  dom  B )
 
Theoremopeldmd 5327 Membership of first of an ordered pair in a domain. Deduction version of opeldm 5328. (Contributed by AV, 11-Mar-2021.)
 |-  ( ph  ->  A  e.  V )   &    |-  ( ph  ->  B  e.  W )   =>    |-  ( ph  ->  (
 <. A ,  B >.  e.  C  ->  A  e.  dom 
 C ) )
 
Theoremopeldm 5328 Membership of first of an ordered pair in a domain. (Contributed by NM, 30-Jul-1995.)
 |-  A  e.  _V   &    |-  B  e.  _V   =>    |-  ( <. A ,  B >.  e.  C  ->  A  e.  dom  C )
 
Theorembreldm 5329 Membership of first of a binary relation in a domain. (Contributed by NM, 30-Jul-1995.)
 |-  A  e.  _V   &    |-  B  e.  _V   =>    |-  ( A R B  ->  A  e.  dom  R )
 
Theorembreldmg 5330 Membership of first of a binary relation in a domain. (Contributed by NM, 21-Mar-2007.)
 |-  ( ( A  e.  C  /\  B  e.  D  /\  A R B ) 
 ->  A  e.  dom  R )
 
Theoremdmun 5331 The domain of a union is the union of domains. Exercise 56(a) of [Enderton] p. 65. (Contributed by NM, 12-Aug-1994.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
 |- 
 dom  ( A  u.  B )  =  ( dom  A  u.  dom  B )
 
Theoremdmin 5332 The domain of an intersection belong to the intersection of domains. Theorem 6 of [Suppes] p. 60. (Contributed by NM, 15-Sep-2004.)
 |- 
 dom  ( A  i^i  B )  C_  ( dom  A  i^i  dom  B )
 
Theoremdmiun 5333 The domain of an indexed union. (Contributed by Mario Carneiro, 26-Apr-2016.)
 |- 
 dom  U_ x  e.  A  B  =  U_ x  e.  A  dom  B
 
Theoremdmuni 5334* The domain of a union. Part of Exercise 8 of [Enderton] p. 41. (Contributed by NM, 3-Feb-2004.)
 |- 
 dom  U. A  =  U_ x  e.  A  dom  x
 
Theoremdmopab 5335* The domain of a class of ordered pairs. (Contributed by NM, 16-May-1995.) (Revised by Mario Carneiro, 4-Dec-2016.)
 |- 
 dom  { <. x ,  y >.  |  ph }  =  { x  |  E. y ph }
 
Theoremdmopabss 5336* Upper bound for the domain of a restricted class of ordered pairs. (Contributed by NM, 31-Jan-2004.)
 |- 
 dom  { <. x ,  y >.  |  ( x  e.  A  /\  ph ) }  C_  A
 
Theoremdmopab3 5337* The domain of a restricted class of ordered pairs. (Contributed by NM, 31-Jan-2004.)
 |-  ( A. x  e.  A  E. y ph  <->  dom  {
 <. x ,  y >.  |  ( x  e.  A  /\  ph ) }  =  A )
 
Theoremopabssxpd 5338* An ordered-pair class abstraction is a subset of an Cartesian product. Formerly part of proof for opabex2 7227. (Contributed by AV, 26-Nov-2021.)
 |-  ( ( ph  /\  ps )  ->  x  e.  A )   &    |-  ( ( ph  /\  ps )  ->  y  e.  B )   =>    |-  ( ph  ->  { <. x ,  y >.  |  ps } 
 C_  ( A  X.  B ) )
 
Theoremdm0 5339 The domain of the empty set is empty. Part of Theorem 3.8(v) of [Monk1] p. 36. (Contributed by NM, 4-Jul-1994.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
 |- 
 dom  (/)  =  (/)
 
Theoremdmi 5340 The domain of the identity relation is the universe. (Contributed by NM, 30-Apr-1998.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
 |- 
 dom  _I  =  _V
 
Theoremdmv 5341 The domain of the universe is the universe. (Contributed by NM, 8-Aug-2003.)
 |- 
 dom  _V  =  _V
 
Theoremdm0rn0 5342 An empty domain is equivalent to an empty range. (Contributed by NM, 21-May-1998.)
 |-  ( dom  A  =  (/)  <->  ran 
 A  =  (/) )
 
Theoremreldm0 5343 A relation is empty iff its domain is empty. (Contributed by NM, 15-Sep-2004.)
 |-  ( Rel  A  ->  ( A  =  (/)  <->  dom  A  =  (/) ) )
 
Theoremdmxp 5344 The domain of a Cartesian product. Part of Theorem 3.13(x) of [Monk1] p. 37. (Contributed by NM, 28-Jul-1995.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
 |-  ( B  =/=  (/)  ->  dom  ( A  X.  B )  =  A )
 
Theoremdmxpid 5345 The domain of a square Cartesian product. (Contributed by NM, 28-Jul-1995.)
 |- 
 dom  ( A  X.  A )  =  A
 
Theoremdmxpin 5346 The domain of the intersection of two square Cartesian products. Unlike dmin 5332, equality holds. (Contributed by NM, 29-Jan-2008.)
 |- 
 dom  ( ( A  X.  A )  i^i  ( B  X.  B ) )  =  ( A  i^i  B )
 
Theoremxpid11 5347 The Cartesian product of a class with itself is one-to-one. (Contributed by NM, 5-Nov-2006.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
 |-  ( ( A  X.  A )  =  ( B  X.  B )  <->  A  =  B )
 
Theoremdmcnvcnv 5348 The domain of the double converse of a class (which doesn't have to be a relation as in dfrel2 5583). (Contributed by NM, 8-Apr-2007.)
 |- 
 dom  `' `' A  =  dom  A
 
Theoremrncnvcnv 5349 The range of the double converse of a class. (Contributed by NM, 8-Apr-2007.)
 |- 
 ran  `' `' A  =  ran  A
 
Theoremelreldm 5350 The first member of an ordered pair in a relation belongs to the domain of the relation. (Contributed by NM, 28-Jul-2004.)
 |-  ( ( Rel  A  /\  B  e.  A ) 
 ->  |^| |^| B  e.  dom  A )
 
Theoremrneq 5351 Equality theorem for range. (Contributed by NM, 29-Dec-1996.)
 |-  ( A  =  B  ->  ran  A  =  ran  B )
 
Theoremrneqi 5352 Equality inference for range. (Contributed by NM, 4-Mar-2004.)
 |-  A  =  B   =>    |-  ran  A  =  ran  B
 
Theoremrneqd 5353 Equality deduction for range. (Contributed by NM, 4-Mar-2004.)
 |-  ( ph  ->  A  =  B )   =>    |-  ( ph  ->  ran  A  =  ran  B )
 
Theoremrnss 5354 Subset theorem for range. (Contributed by NM, 22-Mar-1998.)
 |-  ( A  C_  B  ->  ran  A  C_  ran  B )
 
Theorembrelrng 5355 The second argument of a binary relation belongs to its range. (Contributed by NM, 29-Jun-2008.)
 |-  ( ( A  e.  F  /\  B  e.  G  /\  A C B ) 
 ->  B  e.  ran  C )
 
Theorembrelrn 5356 The second argument of a binary relation belongs to its range. (Contributed by NM, 13-Aug-2004.)
 |-  A  e.  _V   &    |-  B  e.  _V   =>    |-  ( A C B  ->  B  e.  ran  C )
 
Theoremopelrn 5357 Membership of second member of an ordered pair in a range. (Contributed by NM, 23-Feb-1997.)
 |-  A  e.  _V   &    |-  B  e.  _V   =>    |-  ( <. A ,  B >.  e.  C  ->  B  e.  ran  C )
 
Theoremreleldm 5358 The first argument of a binary relation belongs to its domain. Note that  A R B does not imply  Rel 
R: see for example nrelv 5244 and brv 4941. (Contributed by NM, 2-Jul-2008.)
 |-  ( ( Rel  R  /\  A R B ) 
 ->  A  e.  dom  R )
 
Theoremrelelrn 5359 The second argument of a binary relation belongs to its range. (Contributed by NM, 2-Jul-2008.)
 |-  ( ( Rel  R  /\  A R B ) 
 ->  B  e.  ran  R )
 
Theoremreleldmb 5360* Membership in a domain. (Contributed by Mario Carneiro, 5-Nov-2015.)
 |-  ( Rel  R  ->  ( A  e.  dom  R  <->  E. x  A R x ) )
 
Theoremrelelrnb 5361* Membership in a range. (Contributed by Mario Carneiro, 5-Nov-2015.)
 |-  ( Rel  R  ->  ( A  e.  ran  R  <->  E. x  x R A ) )
 
Theoremreleldmi 5362 The first argument of a binary relation belongs to its domain. (Contributed by NM, 28-Apr-2015.)
 |- 
 Rel  R   =>    |-  ( A R B  ->  A  e.  dom  R )
 
Theoremrelelrni 5363 The second argument of a binary relation belongs to its range. (Contributed by NM, 28-Apr-2015.)
 |- 
 Rel  R   =>    |-  ( A R B  ->  B  e.  ran  R )
 
Theoremdfrnf 5364* Definition of range, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 14-Aug-1995.) (Revised by Mario Carneiro, 15-Oct-2016.)
 |-  F/_ x A   &    |-  F/_ y A   =>    |-  ran  A  =  { y  |  E. x  x A y }
 
Theoremelrn2 5365* Membership in a range. (Contributed by NM, 10-Jul-1994.)
 |-  A  e.  _V   =>    |-  ( A  e.  ran 
 B 
 <-> 
 E. x <. x ,  A >.  e.  B )
 
Theoremelrn 5366* Membership in a range. (Contributed by NM, 2-Apr-2004.)
 |-  A  e.  _V   =>    |-  ( A  e.  ran 
 B 
 <-> 
 E. x  x B A )
 
Theoremnfdm 5367 Bound-variable hypothesis builder for domain. (Contributed by NM, 30-Jan-2004.) (Revised by Mario Carneiro, 15-Oct-2016.)
 |-  F/_ x A   =>    |-  F/_ x dom  A
 
Theoremnfrn 5368 Bound-variable hypothesis builder for range. (Contributed by NM, 1-Sep-1999.) (Revised by Mario Carneiro, 15-Oct-2016.)
 |-  F/_ x A   =>    |-  F/_ x ran  A
 
Theoremdmiin 5369 Domain of an intersection. (Contributed by FL, 15-Oct-2012.)
 |- 
 dom  |^|_ x  e.  A  B  C_  |^|_ x  e.  A  dom  B
 
Theoremrnopab 5370* The range of a class of ordered pairs. (Contributed by NM, 14-Aug-1995.) (Revised by Mario Carneiro, 4-Dec-2016.)
 |- 
 ran  { <. x ,  y >.  |  ph }  =  { y  |  E. x ph
 }
 
Theoremrnmpt 5371* The range of a function in maps-to notation. (Contributed by Scott Fenton, 21-Mar-2011.) (Revised by Mario Carneiro, 31-Aug-2015.)
 |-  F  =  ( x  e.  A  |->  B )   =>    |-  ran 
 F  =  { y  |  E. x  e.  A  y  =  B }
 
Theoremelrnmpt 5372* The range of a function in maps-to notation. (Contributed by Mario Carneiro, 20-Feb-2015.)
 |-  F  =  ( x  e.  A  |->  B )   =>    |-  ( C  e.  V  ->  ( C  e.  ran  F  <->  E. x  e.  A  C  =  B )
 )
 
Theoremelrnmpt1s 5373* Elementhood in an image set. (Contributed by Mario Carneiro, 12-Sep-2015.)
 |-  F  =  ( x  e.  A  |->  B )   &    |-  ( x  =  D  ->  B  =  C )   =>    |-  ( ( D  e.  A  /\  C  e.  V )  ->  C  e.  ran  F )
 
Theoremelrnmpt1 5374 Elementhood in an image set. (Contributed by Mario Carneiro, 31-Aug-2015.)
 |-  F  =  ( x  e.  A  |->  B )   =>    |-  ( ( x  e.  A  /\  B  e.  V )  ->  B  e.  ran 
 F )
 
Theoremelrnmptg 5375* Membership in the range of a function. (Contributed by NM, 27-Aug-2007.) (Revised by Mario Carneiro, 31-Aug-2015.)
 |-  F  =  ( x  e.  A  |->  B )   =>    |-  ( A. x  e.  A  B  e.  V  ->  ( C  e.  ran  F  <->  E. x  e.  A  C  =  B ) )
 
Theoremelrnmpti 5376* Membership in the range of a function. (Contributed by NM, 30-Aug-2004.) (Revised by Mario Carneiro, 31-Aug-2015.)
 |-  F  =  ( x  e.  A  |->  B )   &    |-  B  e.  _V   =>    |-  ( C  e.  ran  F  <->  E. x  e.  A  C  =  B )
 
Theoremrn0 5377 The range of the empty set is empty. Part of Theorem 3.8(v) of [Monk1] p. 36. (Contributed by NM, 4-Jul-1994.)
 |- 
 ran  (/)  =  (/)
 
Theoremdfiun3g 5378 Alternate definition of indexed union when  B is a set. (Contributed by Mario Carneiro, 31-Aug-2015.)
 |-  ( A. x  e.  A  B  e.  C  -> 
 U_ x  e.  A  B  =  U. ran  ( x  e.  A  |->  B ) )
 
Theoremdfiin3g 5379 Alternate definition of indexed intersection when  B is a set. (Contributed by Mario Carneiro, 31-Aug-2015.)
 |-  ( A. x  e.  A  B  e.  C  -> 
 |^|_ x  e.  A  B  =  |^| ran  ( x  e.  A  |->  B ) )
 
Theoremdfiun3 5380 Alternate definition of indexed union when  B is a set. (Contributed by Mario Carneiro, 31-Aug-2015.)
 |-  B  e.  _V   =>    |-  U_ x  e.  A  B  =  U. ran  ( x  e.  A  |->  B )
 
Theoremdfiin3 5381 Alternate definition of indexed intersection when  B is a set. (Contributed by Mario Carneiro, 31-Aug-2015.)
 |-  B  e.  _V   =>    |-  |^|_ x  e.  A  B  =  |^| ran  ( x  e.  A  |->  B )
 
Theoremriinint 5382* Express a relative indexed intersection as an intersection. (Contributed by Stefan O'Rear, 22-Feb-2015.)
 |-  ( ( X  e.  V  /\  A. k  e.  I  S  C_  X )  ->  ( X  i^i  |^|_
 k  e.  I  S )  =  |^| ( { X }  u.  ran  (
 k  e.  I  |->  S ) ) )
 
Theoremrelrn0 5383 A relation is empty iff its range is empty. (Contributed by NM, 15-Sep-2004.)
 |-  ( Rel  A  ->  ( A  =  (/)  <->  ran  A  =  (/) ) )
 
Theoremdmrnssfld 5384 The domain and range of a class are included in its double union. (Contributed by NM, 13-May-2008.)
 |-  ( dom  A  u.  ran 
 A )  C_  U. U. A
 
Theoremdmcoss 5385 Domain of a composition. Theorem 21 of [Suppes] p. 63. (Contributed by NM, 19-Mar-1998.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
 |- 
 dom  ( A  o.  B )  C_  dom  B
 
Theoremrncoss 5386 Range of a composition. (Contributed by NM, 19-Mar-1998.)
 |- 
 ran  ( A  o.  B )  C_  ran  A
 
Theoremdmcosseq 5387 Domain of a composition. (Contributed by NM, 28-May-1998.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
 |-  ( ran  B  C_  dom 
 A  ->  dom  ( A  o.  B )  = 
 dom  B )
 
Theoremdmcoeq 5388 Domain of a composition. (Contributed by NM, 19-Mar-1998.)
 |-  ( dom  A  =  ran  B  ->  dom  ( A  o.  B )  = 
 dom  B )
 
Theoremrncoeq 5389 Range of a composition. (Contributed by NM, 19-Mar-1998.)
 |-  ( dom  A  =  ran  B  ->  ran  ( A  o.  B )  = 
 ran  A )
 
Theoremreseq1 5390 Equality theorem for restrictions. (Contributed by NM, 7-Aug-1994.)
 |-  ( A  =  B  ->  ( A  |`  C )  =  ( B  |`  C ) )
 
Theoremreseq2 5391 Equality theorem for restrictions. (Contributed by NM, 8-Aug-1994.)
 |-  ( A  =  B  ->  ( C  |`  A )  =  ( C  |`  B ) )
 
Theoremreseq1i 5392 Equality inference for restrictions. (Contributed by NM, 21-Oct-2014.)
 |-  A  =  B   =>    |-  ( A  |`  C )  =  ( B  |`  C )
 
Theoremreseq2i 5393 Equality inference for restrictions. (Contributed by Paul Chapman, 22-Jun-2011.)
 |-  A  =  B   =>    |-  ( C  |`  A )  =  ( C  |`  B )
 
Theoremreseq12i 5394 Equality inference for restrictions. (Contributed by NM, 21-Oct-2014.)
 |-  A  =  B   &    |-  C  =  D   =>    |-  ( A  |`  C )  =  ( B  |`  D )
 
Theoremreseq1d 5395 Equality deduction for restrictions. (Contributed by NM, 21-Oct-2014.)
 |-  ( ph  ->  A  =  B )   =>    |-  ( ph  ->  ( A  |`  C )  =  ( B  |`  C ) )
 
Theoremreseq2d 5396 Equality deduction for restrictions. (Contributed by Paul Chapman, 22-Jun-2011.)
 |-  ( ph  ->  A  =  B )   =>    |-  ( ph  ->  ( C  |`  A )  =  ( C  |`  B ) )
 
Theoremreseq12d 5397 Equality deduction for restrictions. (Contributed by NM, 21-Oct-2014.)
 |-  ( ph  ->  A  =  B )   &    |-  ( ph  ->  C  =  D )   =>    |-  ( ph  ->  ( A  |`  C )  =  ( B  |`  D ) )
 
Theoremnfres 5398 Bound-variable hypothesis builder for restriction. (Contributed by NM, 15-Sep-2003.) (Revised by David Abernethy, 19-Jun-2012.)
 |-  F/_ x A   &    |-  F/_ x B   =>    |-  F/_ x ( A  |`  B )
 
Theoremcsbres 5399 Distribute proper substitution through the restriction of a class. (Contributed by Alan Sare, 10-Nov-2012.) (Revised by NM, 23-Aug-2018.)
 |-  [_ A  /  x ]_ ( B  |`  C )  =  ( [_ A  /  x ]_ B  |`  [_ A  /  x ]_ C )
 
Theoremres0 5400 A restriction to the empty set is empty. (Contributed by NM, 12-Nov-1994.)
 |-  ( A  |`  (/) )  =  (/)
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42551
  Copyright terms: Public domain < Previous  Next >