MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  csbexg Structured version   Visualization version   Unicode version

Theorem csbexg 4792
Description: The existence of proper substitution into a class. (Contributed by NM, 10-Nov-2005.) (Revised by NM, 17-Aug-2018.)
Assertion
Ref Expression
csbexg  |-  ( A. x  B  e.  W  ->  [_ A  /  x ]_ B  e.  _V )

Proof of Theorem csbexg
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 df-csb 3534 . . 3  |-  [_ A  /  x ]_ B  =  { y  |  [. A  /  x ]. y  e.  B }
2 abid2 2745 . . . . . . . 8  |-  { y  |  y  e.  B }  =  B
3 elex 3212 . . . . . . . 8  |-  ( B  e.  W  ->  B  e.  _V )
42, 3syl5eqel 2705 . . . . . . 7  |-  ( B  e.  W  ->  { y  |  y  e.  B }  e.  _V )
54alimi 1739 . . . . . 6  |-  ( A. x  B  e.  W  ->  A. x { y  |  y  e.  B }  e.  _V )
6 spsbc 3448 . . . . . 6  |-  ( A  e.  _V  ->  ( A. x { y  |  y  e.  B }  e.  _V  ->  [. A  /  x ]. { y  |  y  e.  B }  e.  _V ) )
75, 6syl5 34 . . . . 5  |-  ( A  e.  _V  ->  ( A. x  B  e.  W  ->  [. A  /  x ]. { y  |  y  e.  B }  e.  _V ) )
8 nfcv 2764 . . . . . 6  |-  F/_ x _V
98sbcabel 3517 . . . . 5  |-  ( A  e.  _V  ->  ( [. A  /  x ]. { y  |  y  e.  B }  e.  _V 
<->  { y  |  [. A  /  x ]. y  e.  B }  e.  _V ) )
107, 9sylibd 229 . . . 4  |-  ( A  e.  _V  ->  ( A. x  B  e.  W  ->  { y  | 
[. A  /  x ]. y  e.  B }  e.  _V )
)
1110imp 445 . . 3  |-  ( ( A  e.  _V  /\  A. x  B  e.  W
)  ->  { y  |  [. A  /  x ]. y  e.  B }  e.  _V )
121, 11syl5eqel 2705 . 2  |-  ( ( A  e.  _V  /\  A. x  B  e.  W
)  ->  [_ A  /  x ]_ B  e.  _V )
13 csbprc 3980 . . . 4  |-  ( -.  A  e.  _V  ->  [_ A  /  x ]_ B  =  (/) )
14 0ex 4790 . . . 4  |-  (/)  e.  _V
1513, 14syl6eqel 2709 . . 3  |-  ( -.  A  e.  _V  ->  [_ A  /  x ]_ B  e.  _V )
1615adantr 481 . 2  |-  ( ( -.  A  e.  _V  /\ 
A. x  B  e.  W )  ->  [_ A  /  x ]_ B  e. 
_V )
1712, 16pm2.61ian 831 1  |-  ( A. x  B  e.  W  ->  [_ A  /  x ]_ B  e.  _V )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 384   A.wal 1481    e. wcel 1990   {cab 2608   _Vcvv 3200   [.wsbc 3435   [_csb 3533   (/)c0 3915
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-nul 4789
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-nul 3916
This theorem is referenced by:  csbex  4793  abfmpeld  29454
  Copyright terms: Public domain W3C validator