| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > abfmpeld | Structured version Visualization version Unicode version | ||
| Description: Membership in an element of a mapping function-defined family of sets. (Contributed by Thierry Arnoux, 19-Oct-2016.) |
| Ref | Expression |
|---|---|
| abfmpeld.1 |
|
| abfmpeld.2 |
|
| abfmpeld.3 |
|
| Ref | Expression |
|---|---|
| abfmpeld |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abfmpeld.2 |
. . . . . . . . . 10
| |
| 2 | 1 | alrimiv 1855 |
. . . . . . . . 9
|
| 3 | csbexg 4792 |
. . . . . . . . 9
| |
| 4 | 2, 3 | syl 17 |
. . . . . . . 8
|
| 5 | abfmpeld.1 |
. . . . . . . . 9
| |
| 6 | 5 | fvmpts 6285 |
. . . . . . . 8
|
| 7 | 4, 6 | sylan2 491 |
. . . . . . 7
|
| 8 | csbab 4008 |
. . . . . . 7
| |
| 9 | 7, 8 | syl6eq 2672 |
. . . . . 6
|
| 10 | 9 | eleq2d 2687 |
. . . . 5
|
| 11 | 10 | adantl 482 |
. . . 4
|
| 12 | simpll 790 |
. . . . . . . 8
| |
| 13 | abfmpeld.3 |
. . . . . . . . . . 11
| |
| 14 | 13 | ancomsd 470 |
. . . . . . . . . 10
|
| 15 | 14 | adantl 482 |
. . . . . . . . 9
|
| 16 | 15 | impl 650 |
. . . . . . . 8
|
| 17 | 12, 16 | sbcied 3472 |
. . . . . . 7
|
| 18 | 17 | ex 450 |
. . . . . 6
|
| 19 | 18 | alrimiv 1855 |
. . . . 5
|
| 20 | elabgt 3347 |
. . . . 5
| |
| 21 | 19, 20 | sylan2 491 |
. . . 4
|
| 22 | 11, 21 | bitrd 268 |
. . 3
|
| 23 | 22 | an13s 845 |
. 2
|
| 24 | 23 | ex 450 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-fal 1489 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-iota 5851 df-fun 5890 df-fv 5896 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |