Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  abfmpeld Structured version   Visualization version   Unicode version

Theorem abfmpeld 29454
Description: Membership in an element of a mapping function-defined family of sets. (Contributed by Thierry Arnoux, 19-Oct-2016.)
Hypotheses
Ref Expression
abfmpeld.1  |-  F  =  ( x  e.  V  |->  { y  |  ps } )
abfmpeld.2  |-  ( ph  ->  { y  |  ps }  e.  _V )
abfmpeld.3  |-  ( ph  ->  ( ( x  =  A  /\  y  =  B )  ->  ( ps 
<->  ch ) ) )
Assertion
Ref Expression
abfmpeld  |-  ( ph  ->  ( ( A  e.  V  /\  B  e.  W )  ->  ( B  e.  ( F `  A )  <->  ch )
) )
Distinct variable groups:    x, y, A    x, B, y    x, F, y    x, V, y   
y, W    ch, x, y    ph, x, y
Allowed substitution hints:    ps( x, y)    W( x)

Proof of Theorem abfmpeld
StepHypRef Expression
1 abfmpeld.2 . . . . . . . . . 10  |-  ( ph  ->  { y  |  ps }  e.  _V )
21alrimiv 1855 . . . . . . . . 9  |-  ( ph  ->  A. x { y  |  ps }  e.  _V )
3 csbexg 4792 . . . . . . . . 9  |-  ( A. x { y  |  ps }  e.  _V  ->  [_ A  /  x ]_ { y  |  ps }  e.  _V )
42, 3syl 17 . . . . . . . 8  |-  ( ph  ->  [_ A  /  x ]_ { y  |  ps }  e.  _V )
5 abfmpeld.1 . . . . . . . . 9  |-  F  =  ( x  e.  V  |->  { y  |  ps } )
65fvmpts 6285 . . . . . . . 8  |-  ( ( A  e.  V  /\  [_ A  /  x ]_ { y  |  ps }  e.  _V )  ->  ( F `  A
)  =  [_ A  /  x ]_ { y  |  ps } )
74, 6sylan2 491 . . . . . . 7  |-  ( ( A  e.  V  /\  ph )  ->  ( F `  A )  =  [_ A  /  x ]_ {
y  |  ps }
)
8 csbab 4008 . . . . . . 7  |-  [_ A  /  x ]_ { y  |  ps }  =  { y  |  [. A  /  x ]. ps }
97, 8syl6eq 2672 . . . . . 6  |-  ( ( A  e.  V  /\  ph )  ->  ( F `  A )  =  {
y  |  [. A  /  x ]. ps }
)
109eleq2d 2687 . . . . 5  |-  ( ( A  e.  V  /\  ph )  ->  ( B  e.  ( F `  A
)  <->  B  e.  { y  |  [. A  /  x ]. ps } ) )
1110adantl 482 . . . 4  |-  ( ( B  e.  W  /\  ( A  e.  V  /\  ph ) )  -> 
( B  e.  ( F `  A )  <-> 
B  e.  { y  |  [. A  /  x ]. ps } ) )
12 simpll 790 . . . . . . . 8  |-  ( ( ( A  e.  V  /\  ph )  /\  y  =  B )  ->  A  e.  V )
13 abfmpeld.3 . . . . . . . . . . 11  |-  ( ph  ->  ( ( x  =  A  /\  y  =  B )  ->  ( ps 
<->  ch ) ) )
1413ancomsd 470 . . . . . . . . . 10  |-  ( ph  ->  ( ( y  =  B  /\  x  =  A )  ->  ( ps 
<->  ch ) ) )
1514adantl 482 . . . . . . . . 9  |-  ( ( A  e.  V  /\  ph )  ->  ( (
y  =  B  /\  x  =  A )  ->  ( ps  <->  ch )
) )
1615impl 650 . . . . . . . 8  |-  ( ( ( ( A  e.  V  /\  ph )  /\  y  =  B
)  /\  x  =  A )  ->  ( ps 
<->  ch ) )
1712, 16sbcied 3472 . . . . . . 7  |-  ( ( ( A  e.  V  /\  ph )  /\  y  =  B )  ->  ( [. A  /  x ]. ps  <->  ch ) )
1817ex 450 . . . . . 6  |-  ( ( A  e.  V  /\  ph )  ->  ( y  =  B  ->  ( [. A  /  x ]. ps  <->  ch ) ) )
1918alrimiv 1855 . . . . 5  |-  ( ( A  e.  V  /\  ph )  ->  A. y
( y  =  B  ->  ( [. A  /  x ]. ps  <->  ch )
) )
20 elabgt 3347 . . . . 5  |-  ( ( B  e.  W  /\  A. y ( y  =  B  ->  ( [. A  /  x ]. ps  <->  ch ) ) )  -> 
( B  e.  {
y  |  [. A  /  x ]. ps }  <->  ch ) )
2119, 20sylan2 491 . . . 4  |-  ( ( B  e.  W  /\  ( A  e.  V  /\  ph ) )  -> 
( B  e.  {
y  |  [. A  /  x ]. ps }  <->  ch ) )
2211, 21bitrd 268 . . 3  |-  ( ( B  e.  W  /\  ( A  e.  V  /\  ph ) )  -> 
( B  e.  ( F `  A )  <->  ch ) )
2322an13s 845 . 2  |-  ( (
ph  /\  ( A  e.  V  /\  B  e.  W ) )  -> 
( B  e.  ( F `  A )  <->  ch ) )
2423ex 450 1  |-  ( ph  ->  ( ( A  e.  V  /\  B  e.  W )  ->  ( B  e.  ( F `  A )  <->  ch )
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384   A.wal 1481    = wceq 1483    e. wcel 1990   {cab 2608   _Vcvv 3200   [.wsbc 3435   [_csb 3533    |-> cmpt 4729   ` cfv 5888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator