MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sseliALT Structured version   Visualization version   Unicode version

Theorem sseliALT 4791
Description: Alternate proof of sseli 3599 illustrating the use of the weak deduction theorem to prove it from the inference sselii 3600. (Contributed by NM, 24-Aug-2018.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
sseliALT.1  |-  A  C_  B
Assertion
Ref Expression
sseliALT  |-  ( C  e.  A  ->  C  e.  B )

Proof of Theorem sseliALT
StepHypRef Expression
1 biidd 252 . 2  |-  ( A  =  if ( C  e.  A ,  A ,  { (/) } )  -> 
( C  e.  B  <->  C  e.  B ) )
2 eleq2 2690 . 2  |-  ( B  =  if ( C  e.  A ,  B ,  { (/) } )  -> 
( C  e.  B  <->  C  e.  if ( C  e.  A ,  B ,  { (/) } ) ) )
3 eleq1 2689 . 2  |-  ( C  =  if ( C  e.  A ,  C ,  (/) )  ->  ( C  e.  if ( C  e.  A ,  B ,  { (/) } )  <-> 
if ( C  e.  A ,  C ,  (/) )  e.  if ( C  e.  A ,  B ,  { (/) } ) ) )
4 sseq1 3626 . . . 4  |-  ( A  =  if ( C  e.  A ,  A ,  { (/) } )  -> 
( A  C_  B  <->  if ( C  e.  A ,  A ,  { (/) } )  C_  B )
)
5 sseq2 3627 . . . 4  |-  ( B  =  if ( C  e.  A ,  B ,  { (/) } )  -> 
( if ( C  e.  A ,  A ,  { (/) } )  C_  B 
<->  if ( C  e.  A ,  A ,  { (/) } )  C_  if ( C  e.  A ,  B ,  { (/) } ) ) )
6 biidd 252 . . . 4  |-  ( C  =  if ( C  e.  A ,  C ,  (/) )  ->  ( if ( C  e.  A ,  A ,  { (/) } )  C_  if ( C  e.  A ,  B ,  { (/) } )  <-> 
if ( C  e.  A ,  A ,  { (/) } )  C_  if ( C  e.  A ,  B ,  { (/) } ) ) )
7 sseq1 3626 . . . 4  |-  ( {
(/) }  =  if ( C  e.  A ,  A ,  { (/) } )  ->  ( { (/)
}  C_  { (/) }  <->  if ( C  e.  A ,  A ,  { (/) } ) 
C_  { (/) } ) )
8 sseq2 3627 . . . 4  |-  ( {
(/) }  =  if ( C  e.  A ,  B ,  { (/) } )  ->  ( if ( C  e.  A ,  A ,  { (/) } )  C_  { (/) }  <->  if ( C  e.  A ,  A ,  { (/) } ) 
C_  if ( C  e.  A ,  B ,  { (/) } ) ) )
9 biidd 252 . . . 4  |-  ( (/)  =  if ( C  e.  A ,  C ,  (/) )  ->  ( if ( C  e.  A ,  A ,  { (/) } )  C_  if ( C  e.  A ,  B ,  { (/) } )  <-> 
if ( C  e.  A ,  A ,  { (/) } )  C_  if ( C  e.  A ,  B ,  { (/) } ) ) )
10 sseliALT.1 . . . 4  |-  A  C_  B
11 ssid 3624 . . . 4  |-  { (/) } 
C_  { (/) }
124, 5, 6, 7, 8, 9, 10, 11keephyp3v 4154 . . 3  |-  if ( C  e.  A ,  A ,  { (/) } ) 
C_  if ( C  e.  A ,  B ,  { (/) } )
13 eleq2 2690 . . . 4  |-  ( A  =  if ( C  e.  A ,  A ,  { (/) } )  -> 
( C  e.  A  <->  C  e.  if ( C  e.  A ,  A ,  { (/) } ) ) )
14 biidd 252 . . . 4  |-  ( B  =  if ( C  e.  A ,  B ,  { (/) } )  -> 
( C  e.  if ( C  e.  A ,  A ,  { (/) } )  <->  C  e.  if ( C  e.  A ,  A ,  { (/) } ) ) )
15 eleq1 2689 . . . 4  |-  ( C  =  if ( C  e.  A ,  C ,  (/) )  ->  ( C  e.  if ( C  e.  A ,  A ,  { (/) } )  <-> 
if ( C  e.  A ,  C ,  (/) )  e.  if ( C  e.  A ,  A ,  { (/) } ) ) )
16 eleq2 2690 . . . 4  |-  ( {
(/) }  =  if ( C  e.  A ,  A ,  { (/) } )  ->  ( (/)  e.  { (/)
}  <->  (/)  e.  if ( C  e.  A ,  A ,  { (/) } ) ) )
17 biidd 252 . . . 4  |-  ( {
(/) }  =  if ( C  e.  A ,  B ,  { (/) } )  ->  ( (/)  e.  if ( C  e.  A ,  A ,  { (/) } )  <->  (/)  e.  if ( C  e.  A ,  A ,  { (/) } ) ) )
18 eleq1 2689 . . . 4  |-  ( (/)  =  if ( C  e.  A ,  C ,  (/) )  ->  ( (/)  e.  if ( C  e.  A ,  A ,  { (/) } )  <->  if ( C  e.  A ,  C ,  (/) )  e.  if ( C  e.  A ,  A ,  { (/) } ) ) )
19 0ex 4790 . . . . 5  |-  (/)  e.  _V
2019snid 4208 . . . 4  |-  (/)  e.  { (/)
}
2113, 14, 15, 16, 17, 18, 20elimhyp3v 4148 . . 3  |-  if ( C  e.  A ,  C ,  (/) )  e.  if ( C  e.  A ,  A ,  { (/) } )
2212, 21sselii 3600 . 2  |-  if ( C  e.  A ,  C ,  (/) )  e.  if ( C  e.  A ,  B ,  { (/) } )
231, 2, 3, 22dedth3v 4144 1  |-  ( C  e.  A  ->  C  e.  B )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1483    e. wcel 1990    C_ wss 3574   (/)c0 3915   ifcif 4086   {csn 4177
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-nul 4789
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-v 3202  df-dif 3577  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator