| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sseliALT | Structured version Visualization version Unicode version | ||
| Description: Alternate proof of sseli 3599 illustrating the use of the weak deduction theorem to prove it from the inference sselii 3600. (Contributed by NM, 24-Aug-2018.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| sseliALT.1 |
|
| Ref | Expression |
|---|---|
| sseliALT |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biidd 252 |
. 2
| |
| 2 | eleq2 2690 |
. 2
| |
| 3 | eleq1 2689 |
. 2
| |
| 4 | sseq1 3626 |
. . . 4
| |
| 5 | sseq2 3627 |
. . . 4
| |
| 6 | biidd 252 |
. . . 4
| |
| 7 | sseq1 3626 |
. . . 4
| |
| 8 | sseq2 3627 |
. . . 4
| |
| 9 | biidd 252 |
. . . 4
| |
| 10 | sseliALT.1 |
. . . 4
| |
| 11 | ssid 3624 |
. . . 4
| |
| 12 | 4, 5, 6, 7, 8, 9, 10, 11 | keephyp3v 4154 |
. . 3
|
| 13 | eleq2 2690 |
. . . 4
| |
| 14 | biidd 252 |
. . . 4
| |
| 15 | eleq1 2689 |
. . . 4
| |
| 16 | eleq2 2690 |
. . . 4
| |
| 17 | biidd 252 |
. . . 4
| |
| 18 | eleq1 2689 |
. . . 4
| |
| 19 | 0ex 4790 |
. . . . 5
| |
| 20 | 19 | snid 4208 |
. . . 4
|
| 21 | 13, 14, 15, 16, 17, 18, 20 | elimhyp3v 4148 |
. . 3
|
| 22 | 12, 21 | sselii 3600 |
. 2
|
| 23 | 1, 2, 3, 22 | dedth3v 4144 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-nul 4789 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-v 3202 df-dif 3577 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |