Users' Mathboxes Mathbox for Giovanni Mascellani < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  csbgfi Structured version   Visualization version   Unicode version

Theorem csbgfi 33935
Description: Substitution for a variable not free in a class does not affect it, in inference form. (Contributed by Giovanni Mascellani, 4-Jun-2019.)
Hypotheses
Ref Expression
csbgfi.1  |-  A  e. 
_V
csbgfi.2  |-  F/_ x B
Assertion
Ref Expression
csbgfi  |-  [_ A  /  x ]_ B  =  B

Proof of Theorem csbgfi
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 df-csb 3534 . . . 4  |-  [_ A  /  x ]_ B  =  { y  |  [. A  /  x ]. y  e.  B }
21abeq2i 2735 . . 3  |-  ( y  e.  [_ A  /  x ]_ B  <->  [. A  /  x ]. y  e.  B
)
3 csbgfi.1 . . . 4  |-  A  e. 
_V
4 csbgfi.2 . . . . 5  |-  F/_ x B
54nfcri 2758 . . . 4  |-  F/ x  y  e.  B
63, 5sbcgfi 33933 . . 3  |-  ( [. A  /  x ]. y  e.  B  <->  y  e.  B
)
72, 6bitri 264 . 2  |-  ( y  e.  [_ A  /  x ]_ B  <->  y  e.  B )
87eqriv 2619 1  |-  [_ A  /  x ]_ B  =  B
Colors of variables: wff setvar class
Syntax hints:    = wceq 1483    e. wcel 1990   F/_wnfc 2751   _Vcvv 3200   [.wsbc 3435   [_csb 3533
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-v 3202  df-sbc 3436  df-csb 3534
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator