Users' Mathboxes Mathbox for Giovanni Mascellani < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  csbcom2fi Structured version   Visualization version   Unicode version

Theorem csbcom2fi 33934
Description: Commutative law for double class substitution in a class, with non free variable condition and in inference form. (Contributed by Giovanni Mascellani, 4-Jun-2019.)
Hypotheses
Ref Expression
csbcom2fi.1  |-  A  e. 
_V
csbcom2fi.2  |-  F/_ y A
csbcom2fi.3  |-  [_ A  /  x ]_ B  =  C
csbcom2fi.4  |-  [_ A  /  x ]_ D  =  E
Assertion
Ref Expression
csbcom2fi  |-  [_ A  /  x ]_ [_ B  /  y ]_ D  =  [_ C  /  y ]_ E
Distinct variable group:    x, y
Allowed substitution hints:    A( x, y)    B( x, y)    C( x, y)    D( x, y)    E( x, y)

Proof of Theorem csbcom2fi
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 df-csb 3534 . . . . 5  |-  [_ A  /  x ]_ [_ B  /  y ]_ D  =  { z  |  [. A  /  x ]. z  e.  [_ B  /  y ]_ D }
21abeq2i 2735 . . . 4  |-  ( z  e.  [_ A  /  x ]_ [_ B  / 
y ]_ D  <->  [. A  /  x ]. z  e.  [_ B  /  y ]_ D
)
3 df-csb 3534 . . . . . 6  |-  [_ B  /  y ]_ D  =  { z  |  [. B  /  y ]. z  e.  D }
43abeq2i 2735 . . . . 5  |-  ( z  e.  [_ B  / 
y ]_ D  <->  [. B  / 
y ]. z  e.  D
)
54sbcbii 3491 . . . 4  |-  ( [. A  /  x ]. z  e.  [_ B  /  y ]_ D  <->  [. A  /  x ]. [. B  /  y ]. z  e.  D
)
62, 5bitri 264 . . 3  |-  ( z  e.  [_ A  /  x ]_ [_ B  / 
y ]_ D  <->  [. A  /  x ]. [. B  / 
y ]. z  e.  D
)
7 csbcom2fi.1 . . . 4  |-  A  e. 
_V
8 csbcom2fi.2 . . . 4  |-  F/_ y A
9 csbcom2fi.3 . . . 4  |-  [_ A  /  x ]_ B  =  C
10 df-csb 3534 . . . . . 6  |-  [_ A  /  x ]_ D  =  { z  |  [. A  /  x ]. z  e.  D }
1110abeq2i 2735 . . . . 5  |-  ( z  e.  [_ A  /  x ]_ D  <->  [. A  /  x ]. z  e.  D
)
12 csbcom2fi.4 . . . . . 6  |-  [_ A  /  x ]_ D  =  E
1312eleq2i 2693 . . . . 5  |-  ( z  e.  [_ A  /  x ]_ D  <->  z  e.  E )
1411, 13bitr3i 266 . . . 4  |-  ( [. A  /  x ]. z  e.  D  <->  z  e.  E
)
157, 8, 9, 14sbccom2fi 33932 . . 3  |-  ( [. A  /  x ]. [. B  /  y ]. z  e.  D  <->  [. C  /  y ]. z  e.  E
)
16 sbcel2 3989 . . 3  |-  ( [. C  /  y ]. z  e.  E  <->  z  e.  [_ C  /  y ]_ E
)
176, 15, 163bitri 286 . 2  |-  ( z  e.  [_ A  /  x ]_ [_ B  / 
y ]_ D  <->  z  e.  [_ C  /  y ]_ E )
1817eqriv 2619 1  |-  [_ A  /  x ]_ [_ B  /  y ]_ D  =  [_ C  /  y ]_ E
Colors of variables: wff setvar class
Syntax hints:    = wceq 1483    e. wcel 1990   F/_wnfc 2751   _Vcvv 3200   [.wsbc 3435   [_csb 3533
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-nul 3916
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator