Users' Mathboxes Mathbox for ML < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  csbfinxpg Structured version   Visualization version   Unicode version

Theorem csbfinxpg 33225
Description: Distribute proper substitution through Cartesian exponentiation. (Contributed by ML, 25-Oct-2020.)
Assertion
Ref Expression
csbfinxpg  |-  ( A  e.  V  ->  [_ A  /  x ]_ ( U ^^ ^^ N )  =  ( [_ A  /  x ]_ U ^^ ^^ [_ A  /  x ]_ N ) )
Distinct variable group:    x, N
Allowed substitution hints:    A( x)    U( x)    V( x)

Proof of Theorem csbfinxpg
Dummy variables  n  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-finxp 33221 . . 3  |-  ( U ^^ ^^ N )  =  { y  |  ( N  e.  om  /\  (/)  =  ( rec (
( n  e.  om ,  z  e.  _V  |->  if ( ( n  =  1o  /\  z  e.  U ) ,  (/) ,  if ( z  e.  ( _V  X.  U
) ,  <. U. n ,  ( 1st `  z
) >. ,  <. n ,  z >. )
) ) ,  <. N ,  y >. ) `  N ) ) }
21csbeq2i 3993 . 2  |-  [_ A  /  x ]_ ( U ^^ ^^ N )  =  [_ A  /  x ]_ { y  |  ( N  e.  om  /\  (/)  =  ( rec (
( n  e.  om ,  z  e.  _V  |->  if ( ( n  =  1o  /\  z  e.  U ) ,  (/) ,  if ( z  e.  ( _V  X.  U
) ,  <. U. n ,  ( 1st `  z
) >. ,  <. n ,  z >. )
) ) ,  <. N ,  y >. ) `  N ) ) }
3 sbcan 3478 . . . . 5  |-  ( [. A  /  x ]. ( N  e.  om  /\  (/)  =  ( rec ( ( n  e.  om ,  z  e.  _V  |->  if ( ( n  =  1o 
/\  z  e.  U
) ,  (/) ,  if ( z  e.  ( _V  X.  U ) ,  <. U. n ,  ( 1st `  z )
>. ,  <. n ,  z >. ) ) ) ,  <. N ,  y
>. ) `  N ) )  <->  ( [. A  /  x ]. N  e. 
om  /\  [. A  /  x ]. (/)  =  ( rec ( ( n  e. 
om ,  z  e. 
_V  |->  if ( ( n  =  1o  /\  z  e.  U ) ,  (/) ,  if ( z  e.  ( _V 
X.  U ) , 
<. U. n ,  ( 1st `  z )
>. ,  <. n ,  z >. ) ) ) ,  <. N ,  y
>. ) `  N ) ) )
4 sbcel1g 3987 . . . . . 6  |-  ( A  e.  V  ->  ( [. A  /  x ]. N  e.  om  <->  [_ A  /  x ]_ N  e.  om )
)
5 sbceq2g 3990 . . . . . . 7  |-  ( A  e.  V  ->  ( [. A  /  x ]. (/)  =  ( rec ( ( n  e. 
om ,  z  e. 
_V  |->  if ( ( n  =  1o  /\  z  e.  U ) ,  (/) ,  if ( z  e.  ( _V 
X.  U ) , 
<. U. n ,  ( 1st `  z )
>. ,  <. n ,  z >. ) ) ) ,  <. N ,  y
>. ) `  N )  <->  (/)  =  [_ A  /  x ]_ ( rec (
( n  e.  om ,  z  e.  _V  |->  if ( ( n  =  1o  /\  z  e.  U ) ,  (/) ,  if ( z  e.  ( _V  X.  U
) ,  <. U. n ,  ( 1st `  z
) >. ,  <. n ,  z >. )
) ) ,  <. N ,  y >. ) `  N ) ) )
6 csbfv12 6231 . . . . . . . . 9  |-  [_ A  /  x ]_ ( rec ( ( n  e. 
om ,  z  e. 
_V  |->  if ( ( n  =  1o  /\  z  e.  U ) ,  (/) ,  if ( z  e.  ( _V 
X.  U ) , 
<. U. n ,  ( 1st `  z )
>. ,  <. n ,  z >. ) ) ) ,  <. N ,  y
>. ) `  N )  =  ( [_ A  /  x ]_ rec (
( n  e.  om ,  z  e.  _V  |->  if ( ( n  =  1o  /\  z  e.  U ) ,  (/) ,  if ( z  e.  ( _V  X.  U
) ,  <. U. n ,  ( 1st `  z
) >. ,  <. n ,  z >. )
) ) ,  <. N ,  y >. ) `  [_ A  /  x ]_ N )
7 csbrdgg 33175 . . . . . . . . . . 11  |-  ( A  e.  V  ->  [_ A  /  x ]_ rec (
( n  e.  om ,  z  e.  _V  |->  if ( ( n  =  1o  /\  z  e.  U ) ,  (/) ,  if ( z  e.  ( _V  X.  U
) ,  <. U. n ,  ( 1st `  z
) >. ,  <. n ,  z >. )
) ) ,  <. N ,  y >. )  =  rec ( [_ A  /  x ]_ ( n  e.  om ,  z  e.  _V  |->  if ( ( n  =  1o 
/\  z  e.  U
) ,  (/) ,  if ( z  e.  ( _V  X.  U ) ,  <. U. n ,  ( 1st `  z )
>. ,  <. n ,  z >. ) ) ) ,  [_ A  /  x ]_ <. N ,  y
>. ) )
8 csbmpt22g 33177 . . . . . . . . . . . . 13  |-  ( A  e.  V  ->  [_ A  /  x ]_ ( n  e.  om ,  z  e.  _V  |->  if ( ( n  =  1o 
/\  z  e.  U
) ,  (/) ,  if ( z  e.  ( _V  X.  U ) ,  <. U. n ,  ( 1st `  z )
>. ,  <. n ,  z >. ) ) )  =  ( n  e. 
[_ A  /  x ]_ om ,  z  e. 
[_ A  /  x ]_ _V  |->  [_ A  /  x ]_ if ( ( n  =  1o  /\  z  e.  U ) ,  (/) ,  if ( z  e.  ( _V  X.  U
) ,  <. U. n ,  ( 1st `  z
) >. ,  <. n ,  z >. )
) ) )
9 csbconstg 3546 . . . . . . . . . . . . . 14  |-  ( A  e.  V  ->  [_ A  /  x ]_ om  =  om )
10 csbconstg 3546 . . . . . . . . . . . . . 14  |-  ( A  e.  V  ->  [_ A  /  x ]_ _V  =  _V )
11 csbif 4138 . . . . . . . . . . . . . . 15  |-  [_ A  /  x ]_ if ( ( n  =  1o 
/\  z  e.  U
) ,  (/) ,  if ( z  e.  ( _V  X.  U ) ,  <. U. n ,  ( 1st `  z )
>. ,  <. n ,  z >. ) )  =  if ( [. A  /  x ]. ( n  =  1o  /\  z  e.  U ) ,  [_ A  /  x ]_ (/) ,  [_ A  /  x ]_ if ( z  e.  ( _V  X.  U ) ,  <. U. n ,  ( 1st `  z )
>. ,  <. n ,  z >. ) )
12 sbcan 3478 . . . . . . . . . . . . . . . . 17  |-  ( [. A  /  x ]. (
n  =  1o  /\  z  e.  U )  <->  (
[. A  /  x ]. n  =  1o  /\ 
[. A  /  x ]. z  e.  U
) )
13 sbcg 3503 . . . . . . . . . . . . . . . . . 18  |-  ( A  e.  V  ->  ( [. A  /  x ]. n  =  1o  <->  n  =  1o ) )
14 sbcel12 3983 . . . . . . . . . . . . . . . . . . 19  |-  ( [. A  /  x ]. z  e.  U  <->  [_ A  /  x ]_ z  e.  [_ A  /  x ]_ U )
15 csbconstg 3546 . . . . . . . . . . . . . . . . . . . 20  |-  ( A  e.  V  ->  [_ A  /  x ]_ z  =  z )
1615eleq1d 2686 . . . . . . . . . . . . . . . . . . 19  |-  ( A  e.  V  ->  ( [_ A  /  x ]_ z  e.  [_ A  /  x ]_ U  <->  z  e.  [_ A  /  x ]_ U ) )
1714, 16syl5bb 272 . . . . . . . . . . . . . . . . . 18  |-  ( A  e.  V  ->  ( [. A  /  x ]. z  e.  U  <->  z  e.  [_ A  /  x ]_ U ) )
1813, 17anbi12d 747 . . . . . . . . . . . . . . . . 17  |-  ( A  e.  V  ->  (
( [. A  /  x ]. n  =  1o  /\ 
[. A  /  x ]. z  e.  U
)  <->  ( n  =  1o  /\  z  e. 
[_ A  /  x ]_ U ) ) )
1912, 18syl5bb 272 . . . . . . . . . . . . . . . 16  |-  ( A  e.  V  ->  ( [. A  /  x ]. ( n  =  1o 
/\  z  e.  U
)  <->  ( n  =  1o  /\  z  e. 
[_ A  /  x ]_ U ) ) )
20 csbconstg 3546 . . . . . . . . . . . . . . . 16  |-  ( A  e.  V  ->  [_ A  /  x ]_ (/)  =  (/) )
21 csbif 4138 . . . . . . . . . . . . . . . . 17  |-  [_ A  /  x ]_ if ( z  e.  ( _V 
X.  U ) , 
<. U. n ,  ( 1st `  z )
>. ,  <. n ,  z >. )  =  if ( [. A  /  x ]. z  e.  ( _V  X.  U ) ,  [_ A  /  x ]_ <. U. n ,  ( 1st `  z )
>. ,  [_ A  /  x ]_ <. n ,  z
>. )
22 sbcel12 3983 . . . . . . . . . . . . . . . . . . 19  |-  ( [. A  /  x ]. z  e.  ( _V  X.  U
)  <->  [_ A  /  x ]_ z  e.  [_ A  /  x ]_ ( _V 
X.  U ) )
23 csbxp 5200 . . . . . . . . . . . . . . . . . . . . 21  |-  [_ A  /  x ]_ ( _V 
X.  U )  =  ( [_ A  /  x ]_ _V  X.  [_ A  /  x ]_ U
)
2410xpeq1d 5138 . . . . . . . . . . . . . . . . . . . . 21  |-  ( A  e.  V  ->  ( [_ A  /  x ]_ _V  X.  [_ A  /  x ]_ U )  =  ( _V  X.  [_ A  /  x ]_ U ) )
2523, 24syl5eq 2668 . . . . . . . . . . . . . . . . . . . 20  |-  ( A  e.  V  ->  [_ A  /  x ]_ ( _V 
X.  U )  =  ( _V  X.  [_ A  /  x ]_ U
) )
2615, 25eleq12d 2695 . . . . . . . . . . . . . . . . . . 19  |-  ( A  e.  V  ->  ( [_ A  /  x ]_ z  e.  [_ A  /  x ]_ ( _V 
X.  U )  <->  z  e.  ( _V  X.  [_ A  /  x ]_ U ) ) )
2722, 26syl5bb 272 . . . . . . . . . . . . . . . . . 18  |-  ( A  e.  V  ->  ( [. A  /  x ]. z  e.  ( _V  X.  U )  <->  z  e.  ( _V  X.  [_ A  /  x ]_ U ) ) )
28 csbconstg 3546 . . . . . . . . . . . . . . . . . 18  |-  ( A  e.  V  ->  [_ A  /  x ]_ <. U. n ,  ( 1st `  z
) >.  =  <. U. n ,  ( 1st `  z
) >. )
29 csbconstg 3546 . . . . . . . . . . . . . . . . . 18  |-  ( A  e.  V  ->  [_ A  /  x ]_ <. n ,  z >.  =  <. n ,  z >. )
3027, 28, 29ifbieq12d 4113 . . . . . . . . . . . . . . . . 17  |-  ( A  e.  V  ->  if ( [. A  /  x ]. z  e.  ( _V  X.  U ) , 
[_ A  /  x ]_ <. U. n ,  ( 1st `  z )
>. ,  [_ A  /  x ]_ <. n ,  z
>. )  =  if ( z  e.  ( _V  X.  [_ A  /  x ]_ U ) ,  <. U. n ,  ( 1st `  z )
>. ,  <. n ,  z >. ) )
3121, 30syl5eq 2668 . . . . . . . . . . . . . . . 16  |-  ( A  e.  V  ->  [_ A  /  x ]_ if ( z  e.  ( _V 
X.  U ) , 
<. U. n ,  ( 1st `  z )
>. ,  <. n ,  z >. )  =  if ( z  e.  ( _V  X.  [_ A  /  x ]_ U ) ,  <. U. n ,  ( 1st `  z )
>. ,  <. n ,  z >. ) )
3219, 20, 31ifbieq12d 4113 . . . . . . . . . . . . . . 15  |-  ( A  e.  V  ->  if ( [. A  /  x ]. ( n  =  1o 
/\  z  e.  U
) ,  [_ A  /  x ]_ (/) ,  [_ A  /  x ]_ if ( z  e.  ( _V  X.  U ) ,  <. U. n ,  ( 1st `  z )
>. ,  <. n ,  z >. ) )  =  if ( ( n  =  1o  /\  z  e.  [_ A  /  x ]_ U ) ,  (/) ,  if ( z  e.  ( _V  X.  [_ A  /  x ]_ U
) ,  <. U. n ,  ( 1st `  z
) >. ,  <. n ,  z >. )
) )
3311, 32syl5eq 2668 . . . . . . . . . . . . . 14  |-  ( A  e.  V  ->  [_ A  /  x ]_ if ( ( n  =  1o 
/\  z  e.  U
) ,  (/) ,  if ( z  e.  ( _V  X.  U ) ,  <. U. n ,  ( 1st `  z )
>. ,  <. n ,  z >. ) )  =  if ( ( n  =  1o  /\  z  e.  [_ A  /  x ]_ U ) ,  (/) ,  if ( z  e.  ( _V  X.  [_ A  /  x ]_ U
) ,  <. U. n ,  ( 1st `  z
) >. ,  <. n ,  z >. )
) )
349, 10, 33mpt2eq123dv 6717 . . . . . . . . . . . . 13  |-  ( A  e.  V  ->  (
n  e.  [_ A  /  x ]_ om , 
z  e.  [_ A  /  x ]_ _V  |->  [_ A  /  x ]_ if ( ( n  =  1o  /\  z  e.  U ) ,  (/) ,  if ( z  e.  ( _V  X.  U
) ,  <. U. n ,  ( 1st `  z
) >. ,  <. n ,  z >. )
) )  =  ( n  e.  om , 
z  e.  _V  |->  if ( ( n  =  1o  /\  z  e. 
[_ A  /  x ]_ U ) ,  (/) ,  if ( z  e.  ( _V  X.  [_ A  /  x ]_ U
) ,  <. U. n ,  ( 1st `  z
) >. ,  <. n ,  z >. )
) ) )
358, 34eqtrd 2656 . . . . . . . . . . . 12  |-  ( A  e.  V  ->  [_ A  /  x ]_ ( n  e.  om ,  z  e.  _V  |->  if ( ( n  =  1o 
/\  z  e.  U
) ,  (/) ,  if ( z  e.  ( _V  X.  U ) ,  <. U. n ,  ( 1st `  z )
>. ,  <. n ,  z >. ) ) )  =  ( n  e. 
om ,  z  e. 
_V  |->  if ( ( n  =  1o  /\  z  e.  [_ A  /  x ]_ U ) ,  (/) ,  if ( z  e.  ( _V  X.  [_ A  /  x ]_ U ) ,  <. U. n ,  ( 1st `  z ) >. ,  <. n ,  z >. )
) ) )
36 csbopg 4420 . . . . . . . . . . . . 13  |-  ( A  e.  V  ->  [_ A  /  x ]_ <. N , 
y >.  =  <. [_ A  /  x ]_ N ,  [_ A  /  x ]_ y >. )
37 csbconstg 3546 . . . . . . . . . . . . . 14  |-  ( A  e.  V  ->  [_ A  /  x ]_ y  =  y )
3837opeq2d 4409 . . . . . . . . . . . . 13  |-  ( A  e.  V  ->  <. [_ A  /  x ]_ N ,  [_ A  /  x ]_ y >.  =  <. [_ A  /  x ]_ N ,  y >. )
3936, 38eqtrd 2656 . . . . . . . . . . . 12  |-  ( A  e.  V  ->  [_ A  /  x ]_ <. N , 
y >.  =  <. [_ A  /  x ]_ N , 
y >. )
40 rdgeq12 7509 . . . . . . . . . . . 12  |-  ( (
[_ A  /  x ]_ ( n  e.  om ,  z  e.  _V  |->  if ( ( n  =  1o  /\  z  e.  U ) ,  (/) ,  if ( z  e.  ( _V  X.  U
) ,  <. U. n ,  ( 1st `  z
) >. ,  <. n ,  z >. )
) )  =  ( n  e.  om , 
z  e.  _V  |->  if ( ( n  =  1o  /\  z  e. 
[_ A  /  x ]_ U ) ,  (/) ,  if ( z  e.  ( _V  X.  [_ A  /  x ]_ U
) ,  <. U. n ,  ( 1st `  z
) >. ,  <. n ,  z >. )
) )  /\  [_ A  /  x ]_ <. N , 
y >.  =  <. [_ A  /  x ]_ N , 
y >. )  ->  rec ( [_ A  /  x ]_ ( n  e.  om ,  z  e.  _V  |->  if ( ( n  =  1o  /\  z  e.  U ) ,  (/) ,  if ( z  e.  ( _V  X.  U
) ,  <. U. n ,  ( 1st `  z
) >. ,  <. n ,  z >. )
) ) ,  [_ A  /  x ]_ <. N ,  y >. )  =  rec ( ( n  e.  om ,  z  e.  _V  |->  if ( ( n  =  1o 
/\  z  e.  [_ A  /  x ]_ U
) ,  (/) ,  if ( z  e.  ( _V  X.  [_ A  /  x ]_ U ) ,  <. U. n ,  ( 1st `  z )
>. ,  <. n ,  z >. ) ) ) ,  <. [_ A  /  x ]_ N ,  y >.
) )
4135, 39, 40syl2anc 693 . . . . . . . . . . 11  |-  ( A  e.  V  ->  rec ( [_ A  /  x ]_ ( n  e.  om ,  z  e.  _V  |->  if ( ( n  =  1o  /\  z  e.  U ) ,  (/) ,  if ( z  e.  ( _V  X.  U
) ,  <. U. n ,  ( 1st `  z
) >. ,  <. n ,  z >. )
) ) ,  [_ A  /  x ]_ <. N ,  y >. )  =  rec ( ( n  e.  om ,  z  e.  _V  |->  if ( ( n  =  1o 
/\  z  e.  [_ A  /  x ]_ U
) ,  (/) ,  if ( z  e.  ( _V  X.  [_ A  /  x ]_ U ) ,  <. U. n ,  ( 1st `  z )
>. ,  <. n ,  z >. ) ) ) ,  <. [_ A  /  x ]_ N ,  y >.
) )
427, 41eqtrd 2656 . . . . . . . . . 10  |-  ( A  e.  V  ->  [_ A  /  x ]_ rec (
( n  e.  om ,  z  e.  _V  |->  if ( ( n  =  1o  /\  z  e.  U ) ,  (/) ,  if ( z  e.  ( _V  X.  U
) ,  <. U. n ,  ( 1st `  z
) >. ,  <. n ,  z >. )
) ) ,  <. N ,  y >. )  =  rec ( ( n  e.  om ,  z  e.  _V  |->  if ( ( n  =  1o 
/\  z  e.  [_ A  /  x ]_ U
) ,  (/) ,  if ( z  e.  ( _V  X.  [_ A  /  x ]_ U ) ,  <. U. n ,  ( 1st `  z )
>. ,  <. n ,  z >. ) ) ) ,  <. [_ A  /  x ]_ N ,  y >.
) )
4342fveq1d 6193 . . . . . . . . 9  |-  ( A  e.  V  ->  ( [_ A  /  x ]_ rec ( ( n  e.  om ,  z  e.  _V  |->  if ( ( n  =  1o 
/\  z  e.  U
) ,  (/) ,  if ( z  e.  ( _V  X.  U ) ,  <. U. n ,  ( 1st `  z )
>. ,  <. n ,  z >. ) ) ) ,  <. N ,  y
>. ) `  [_ A  /  x ]_ N )  =  ( rec (
( n  e.  om ,  z  e.  _V  |->  if ( ( n  =  1o  /\  z  e. 
[_ A  /  x ]_ U ) ,  (/) ,  if ( z  e.  ( _V  X.  [_ A  /  x ]_ U
) ,  <. U. n ,  ( 1st `  z
) >. ,  <. n ,  z >. )
) ) ,  <. [_ A  /  x ]_ N ,  y >. ) `
 [_ A  /  x ]_ N ) )
446, 43syl5eq 2668 . . . . . . . 8  |-  ( A  e.  V  ->  [_ A  /  x ]_ ( rec ( ( n  e. 
om ,  z  e. 
_V  |->  if ( ( n  =  1o  /\  z  e.  U ) ,  (/) ,  if ( z  e.  ( _V 
X.  U ) , 
<. U. n ,  ( 1st `  z )
>. ,  <. n ,  z >. ) ) ) ,  <. N ,  y
>. ) `  N )  =  ( rec (
( n  e.  om ,  z  e.  _V  |->  if ( ( n  =  1o  /\  z  e. 
[_ A  /  x ]_ U ) ,  (/) ,  if ( z  e.  ( _V  X.  [_ A  /  x ]_ U
) ,  <. U. n ,  ( 1st `  z
) >. ,  <. n ,  z >. )
) ) ,  <. [_ A  /  x ]_ N ,  y >. ) `
 [_ A  /  x ]_ N ) )
4544eqeq2d 2632 . . . . . . 7  |-  ( A  e.  V  ->  ( (/)  =  [_ A  /  x ]_ ( rec (
( n  e.  om ,  z  e.  _V  |->  if ( ( n  =  1o  /\  z  e.  U ) ,  (/) ,  if ( z  e.  ( _V  X.  U
) ,  <. U. n ,  ( 1st `  z
) >. ,  <. n ,  z >. )
) ) ,  <. N ,  y >. ) `  N )  <->  (/)  =  ( rec ( ( n  e.  om ,  z  e.  _V  |->  if ( ( n  =  1o 
/\  z  e.  [_ A  /  x ]_ U
) ,  (/) ,  if ( z  e.  ( _V  X.  [_ A  /  x ]_ U ) ,  <. U. n ,  ( 1st `  z )
>. ,  <. n ,  z >. ) ) ) ,  <. [_ A  /  x ]_ N ,  y >.
) `  [_ A  /  x ]_ N ) ) )
465, 45bitrd 268 . . . . . 6  |-  ( A  e.  V  ->  ( [. A  /  x ]. (/)  =  ( rec ( ( n  e. 
om ,  z  e. 
_V  |->  if ( ( n  =  1o  /\  z  e.  U ) ,  (/) ,  if ( z  e.  ( _V 
X.  U ) , 
<. U. n ,  ( 1st `  z )
>. ,  <. n ,  z >. ) ) ) ,  <. N ,  y
>. ) `  N )  <->  (/)  =  ( rec (
( n  e.  om ,  z  e.  _V  |->  if ( ( n  =  1o  /\  z  e. 
[_ A  /  x ]_ U ) ,  (/) ,  if ( z  e.  ( _V  X.  [_ A  /  x ]_ U
) ,  <. U. n ,  ( 1st `  z
) >. ,  <. n ,  z >. )
) ) ,  <. [_ A  /  x ]_ N ,  y >. ) `
 [_ A  /  x ]_ N ) ) )
474, 46anbi12d 747 . . . . 5  |-  ( A  e.  V  ->  (
( [. A  /  x ]. N  e.  om  /\ 
[. A  /  x ]. (/)  =  ( rec ( ( n  e. 
om ,  z  e. 
_V  |->  if ( ( n  =  1o  /\  z  e.  U ) ,  (/) ,  if ( z  e.  ( _V 
X.  U ) , 
<. U. n ,  ( 1st `  z )
>. ,  <. n ,  z >. ) ) ) ,  <. N ,  y
>. ) `  N ) )  <->  ( [_ A  /  x ]_ N  e. 
om  /\  (/)  =  ( rec ( ( n  e.  om ,  z  e.  _V  |->  if ( ( n  =  1o 
/\  z  e.  [_ A  /  x ]_ U
) ,  (/) ,  if ( z  e.  ( _V  X.  [_ A  /  x ]_ U ) ,  <. U. n ,  ( 1st `  z )
>. ,  <. n ,  z >. ) ) ) ,  <. [_ A  /  x ]_ N ,  y >.
) `  [_ A  /  x ]_ N ) ) ) )
483, 47syl5bb 272 . . . 4  |-  ( A  e.  V  ->  ( [. A  /  x ]. ( N  e.  om  /\  (/)  =  ( rec (
( n  e.  om ,  z  e.  _V  |->  if ( ( n  =  1o  /\  z  e.  U ) ,  (/) ,  if ( z  e.  ( _V  X.  U
) ,  <. U. n ,  ( 1st `  z
) >. ,  <. n ,  z >. )
) ) ,  <. N ,  y >. ) `  N ) )  <->  ( [_ A  /  x ]_ N  e.  om  /\  (/)  =  ( rec ( ( n  e.  om ,  z  e.  _V  |->  if ( ( n  =  1o 
/\  z  e.  [_ A  /  x ]_ U
) ,  (/) ,  if ( z  e.  ( _V  X.  [_ A  /  x ]_ U ) ,  <. U. n ,  ( 1st `  z )
>. ,  <. n ,  z >. ) ) ) ,  <. [_ A  /  x ]_ N ,  y >.
) `  [_ A  /  x ]_ N ) ) ) )
4948abbidv 2741 . . 3  |-  ( A  e.  V  ->  { y  |  [. A  /  x ]. ( N  e. 
om  /\  (/)  =  ( rec ( ( n  e.  om ,  z  e.  _V  |->  if ( ( n  =  1o 
/\  z  e.  U
) ,  (/) ,  if ( z  e.  ( _V  X.  U ) ,  <. U. n ,  ( 1st `  z )
>. ,  <. n ,  z >. ) ) ) ,  <. N ,  y
>. ) `  N ) ) }  =  {
y  |  ( [_ A  /  x ]_ N  e.  om  /\  (/)  =  ( rec ( ( n  e.  om ,  z  e.  _V  |->  if ( ( n  =  1o 
/\  z  e.  [_ A  /  x ]_ U
) ,  (/) ,  if ( z  e.  ( _V  X.  [_ A  /  x ]_ U ) ,  <. U. n ,  ( 1st `  z )
>. ,  <. n ,  z >. ) ) ) ,  <. [_ A  /  x ]_ N ,  y >.
) `  [_ A  /  x ]_ N ) ) } )
50 csbab 4008 . . 3  |-  [_ A  /  x ]_ { y  |  ( N  e. 
om  /\  (/)  =  ( rec ( ( n  e.  om ,  z  e.  _V  |->  if ( ( n  =  1o 
/\  z  e.  U
) ,  (/) ,  if ( z  e.  ( _V  X.  U ) ,  <. U. n ,  ( 1st `  z )
>. ,  <. n ,  z >. ) ) ) ,  <. N ,  y
>. ) `  N ) ) }  =  {
y  |  [. A  /  x ]. ( N  e.  om  /\  (/)  =  ( rec ( ( n  e.  om ,  z  e.  _V  |->  if ( ( n  =  1o 
/\  z  e.  U
) ,  (/) ,  if ( z  e.  ( _V  X.  U ) ,  <. U. n ,  ( 1st `  z )
>. ,  <. n ,  z >. ) ) ) ,  <. N ,  y
>. ) `  N ) ) }
51 df-finxp 33221 . . 3  |-  ( [_ A  /  x ]_ U ^^ ^^ [_ A  /  x ]_ N )  =  { y  |  (
[_ A  /  x ]_ N  e.  om  /\  (/)  =  ( rec (
( n  e.  om ,  z  e.  _V  |->  if ( ( n  =  1o  /\  z  e. 
[_ A  /  x ]_ U ) ,  (/) ,  if ( z  e.  ( _V  X.  [_ A  /  x ]_ U
) ,  <. U. n ,  ( 1st `  z
) >. ,  <. n ,  z >. )
) ) ,  <. [_ A  /  x ]_ N ,  y >. ) `
 [_ A  /  x ]_ N ) ) }
5249, 50, 513eqtr4g 2681 . 2  |-  ( A  e.  V  ->  [_ A  /  x ]_ { y  |  ( N  e. 
om  /\  (/)  =  ( rec ( ( n  e.  om ,  z  e.  _V  |->  if ( ( n  =  1o 
/\  z  e.  U
) ,  (/) ,  if ( z  e.  ( _V  X.  U ) ,  <. U. n ,  ( 1st `  z )
>. ,  <. n ,  z >. ) ) ) ,  <. N ,  y
>. ) `  N ) ) }  =  (
[_ A  /  x ]_ U ^^ ^^ [_ A  /  x ]_ N ) )
532, 52syl5eq 2668 1  |-  ( A  e.  V  ->  [_ A  /  x ]_ ( U ^^ ^^ N )  =  ( [_ A  /  x ]_ U ^^ ^^ [_ A  /  x ]_ N ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   {cab 2608   _Vcvv 3200   [.wsbc 3435   [_csb 3533   (/)c0 3915   ifcif 4086   <.cop 4183   U.cuni 4436    X. cxp 5112   ` cfv 5888    |-> cmpt2 6652   omcom 7065   1stc1st 7166   reccrdg 7505   1oc1o 7553   ^^
^^cfinxp 33220
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-xp 5120  df-cnv 5122  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-iota 5851  df-fv 5896  df-oprab 6654  df-mpt2 6655  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-finxp 33221
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator