| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > df-brsiga | Structured version Visualization version Unicode version | ||
| Description: A Borel Algebra is
defined as a sigma-algebra generated by a topology.
'The' Borel sigma-algebra here refers to the sigma-algebra generated by
the topology of open intervals on real numbers. The Borel algebra of a
given topology |
| Ref | Expression |
|---|---|
| df-brsiga |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbrsiga 30244 |
. 2
| |
| 2 | cioo 12175 |
. . . . 5
| |
| 3 | 2 | crn 5115 |
. . . 4
|
| 4 | ctg 16098 |
. . . 4
| |
| 5 | 3, 4 | cfv 5888 |
. . 3
|
| 6 | csigagen 30201 |
. . 3
| |
| 7 | 5, 6 | cfv 5888 |
. 2
|
| 8 | 1, 7 | wceq 1483 |
1
|
| Colors of variables: wff setvar class |
| This definition is referenced by: brsiga 30246 brsigarn 30247 unibrsiga 30249 elmbfmvol2 30329 dya2iocbrsiga 30337 dya2icobrsiga 30338 sxbrsiga 30352 rrvadd 30514 rrvmulc 30515 orrvcval4 30526 orrvcoel 30527 orrvccel 30528 |
| Copyright terms: Public domain | W3C validator |