| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-hom | Structured version Visualization version Unicode version | ||
| Description: Define the hom-set component of a category. (Contributed by Mario Carneiro, 2-Jan-2017.) |
| Ref | Expression |
|---|---|
| df-hom |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | chom 15952 |
. 2
| |
| 2 | c1 9937 |
. . . 4
| |
| 3 | c4 11072 |
. . . 4
| |
| 4 | 2, 3 | cdc 11493 |
. . 3
|
| 5 | 4 | cslot 15856 |
. 2
|
| 6 | 1, 5 | wceq 1483 |
1
|
| Colors of variables: wff setvar class |
| This definition is referenced by: homndx 16074 homid 16075 resshom 16078 prdsval 16115 oppchomfval 16374 wunfunc 16559 wunnat 16616 fuchom 16621 catcoppccl 16758 catcfuccl 16759 catcxpccl 16847 |
| Copyright terms: Public domain | W3C validator |