MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-hom Structured version   Visualization version   GIF version

Definition df-hom 15966
Description: Define the hom-set component of a category. (Contributed by Mario Carneiro, 2-Jan-2017.)
Assertion
Ref Expression
df-hom Hom = Slot 14

Detailed syntax breakdown of Definition df-hom
StepHypRef Expression
1 chom 15952 . 2 class Hom
2 c1 9937 . . . 4 class 1
3 c4 11072 . . . 4 class 4
42, 3cdc 11493 . . 3 class 14
54cslot 15856 . 2 class Slot 14
61, 5wceq 1483 1 wff Hom = Slot 14
Colors of variables: wff setvar class
This definition is referenced by:  homndx  16074  homid  16075  resshom  16078  prdsval  16115  oppchomfval  16374  wunfunc  16559  wunnat  16616  fuchom  16621  catcoppccl  16758  catcfuccl  16759  catcxpccl  16847
  Copyright terms: Public domain W3C validator