| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-hom | Structured version Visualization version GIF version | ||
| Description: Define the hom-set component of a category. (Contributed by Mario Carneiro, 2-Jan-2017.) |
| Ref | Expression |
|---|---|
| df-hom | ⊢ Hom = Slot ;14 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | chom 15952 | . 2 class Hom | |
| 2 | c1 9937 | . . . 4 class 1 | |
| 3 | c4 11072 | . . . 4 class 4 | |
| 4 | 2, 3 | cdc 11493 | . . 3 class ;14 |
| 5 | 4 | cslot 15856 | . 2 class Slot ;14 |
| 6 | 1, 5 | wceq 1483 | 1 wff Hom = Slot ;14 |
| Colors of variables: wff setvar class |
| This definition is referenced by: homndx 16074 homid 16075 resshom 16078 prdsval 16115 oppchomfval 16374 wunfunc 16559 wunnat 16616 fuchom 16621 catcoppccl 16758 catcfuccl 16759 catcxpccl 16847 |
| Copyright terms: Public domain | W3C validator |