MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  catcxpccl Structured version   Visualization version   Unicode version

Theorem catcxpccl 16847
Description: The category of categories for a weak universe is closed under the product category operation. (Contributed by Mario Carneiro, 12-Jan-2017.)
Hypotheses
Ref Expression
catcxpccl.c  |-  C  =  (CatCat `  U )
catcxpccl.b  |-  B  =  ( Base `  C
)
catcxpccl.o  |-  T  =  ( X  X.c  Y )
catcxpccl.u  |-  ( ph  ->  U  e. WUni )
catcxpccl.1  |-  ( ph  ->  om  e.  U )
catcxpccl.x  |-  ( ph  ->  X  e.  B )
catcxpccl.y  |-  ( ph  ->  Y  e.  B )
Assertion
Ref Expression
catcxpccl  |-  ( ph  ->  T  e.  B )

Proof of Theorem catcxpccl
Dummy variables  f 
g  u  v  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 catcxpccl.o . . . . 5  |-  T  =  ( X  X.c  Y )
2 eqid 2622 . . . . 5  |-  ( Base `  X )  =  (
Base `  X )
3 eqid 2622 . . . . 5  |-  ( Base `  Y )  =  (
Base `  Y )
4 eqid 2622 . . . . 5  |-  ( Hom  `  X )  =  ( Hom  `  X )
5 eqid 2622 . . . . 5  |-  ( Hom  `  Y )  =  ( Hom  `  Y )
6 eqid 2622 . . . . 5  |-  (comp `  X )  =  (comp `  X )
7 eqid 2622 . . . . 5  |-  (comp `  Y )  =  (comp `  Y )
8 catcxpccl.x . . . . 5  |-  ( ph  ->  X  e.  B )
9 catcxpccl.y . . . . 5  |-  ( ph  ->  Y  e.  B )
10 eqidd 2623 . . . . 5  |-  ( ph  ->  ( ( Base `  X
)  X.  ( Base `  Y ) )  =  ( ( Base `  X
)  X.  ( Base `  Y ) ) )
111, 2, 3xpcbas 16818 . . . . . . 7  |-  ( (
Base `  X )  X.  ( Base `  Y
) )  =  (
Base `  T )
12 eqid 2622 . . . . . . 7  |-  ( Hom  `  T )  =  ( Hom  `  T )
131, 11, 4, 5, 12xpchomfval 16819 . . . . . 6  |-  ( Hom  `  T )  =  ( u  e.  ( (
Base `  X )  X.  ( Base `  Y
) ) ,  v  e.  ( ( Base `  X )  X.  ( Base `  Y ) ) 
|->  ( ( ( 1st `  u ) ( Hom  `  X ) ( 1st `  v ) )  X.  ( ( 2nd `  u
) ( Hom  `  Y
) ( 2nd `  v
) ) ) )
1413a1i 11 . . . . 5  |-  ( ph  ->  ( Hom  `  T
)  =  ( u  e.  ( ( Base `  X )  X.  ( Base `  Y ) ) ,  v  e.  ( ( Base `  X
)  X.  ( Base `  Y ) )  |->  ( ( ( 1st `  u
) ( Hom  `  X
) ( 1st `  v
) )  X.  (
( 2nd `  u
) ( Hom  `  Y
) ( 2nd `  v
) ) ) ) )
15 eqidd 2623 . . . . 5  |-  ( ph  ->  ( x  e.  ( ( ( Base `  X
)  X.  ( Base `  Y ) )  X.  ( ( Base `  X
)  X.  ( Base `  Y ) ) ) ,  y  e.  ( ( Base `  X
)  X.  ( Base `  Y ) )  |->  ( g  e.  ( ( 2nd `  x ) ( Hom  `  T
) y ) ,  f  e.  ( ( Hom  `  T ) `  x )  |->  <. (
( 1st `  g
) ( <. ( 1st `  ( 1st `  x
) ) ,  ( 1st `  ( 2nd `  x ) ) >.
(comp `  X )
( 1st `  y
) ) ( 1st `  f ) ) ,  ( ( 2nd `  g
) ( <. ( 2nd `  ( 1st `  x
) ) ,  ( 2nd `  ( 2nd `  x ) ) >.
(comp `  Y )
( 2nd `  y
) ) ( 2nd `  f ) ) >.
) )  =  ( x  e.  ( ( ( Base `  X
)  X.  ( Base `  Y ) )  X.  ( ( Base `  X
)  X.  ( Base `  Y ) ) ) ,  y  e.  ( ( Base `  X
)  X.  ( Base `  Y ) )  |->  ( g  e.  ( ( 2nd `  x ) ( Hom  `  T
) y ) ,  f  e.  ( ( Hom  `  T ) `  x )  |->  <. (
( 1st `  g
) ( <. ( 1st `  ( 1st `  x
) ) ,  ( 1st `  ( 2nd `  x ) ) >.
(comp `  X )
( 1st `  y
) ) ( 1st `  f ) ) ,  ( ( 2nd `  g
) ( <. ( 2nd `  ( 1st `  x
) ) ,  ( 2nd `  ( 2nd `  x ) ) >.
(comp `  Y )
( 2nd `  y
) ) ( 2nd `  f ) ) >.
) ) )
161, 2, 3, 4, 5, 6, 7, 8, 9, 10, 14, 15xpcval 16817 . . . 4  |-  ( ph  ->  T  =  { <. (
Base `  ndx ) ,  ( ( Base `  X
)  X.  ( Base `  Y ) ) >. ,  <. ( Hom  `  ndx ) ,  ( Hom  `  T ) >. ,  <. (comp `  ndx ) ,  ( x  e.  ( ( ( Base `  X
)  X.  ( Base `  Y ) )  X.  ( ( Base `  X
)  X.  ( Base `  Y ) ) ) ,  y  e.  ( ( Base `  X
)  X.  ( Base `  Y ) )  |->  ( g  e.  ( ( 2nd `  x ) ( Hom  `  T
) y ) ,  f  e.  ( ( Hom  `  T ) `  x )  |->  <. (
( 1st `  g
) ( <. ( 1st `  ( 1st `  x
) ) ,  ( 1st `  ( 2nd `  x ) ) >.
(comp `  X )
( 1st `  y
) ) ( 1st `  f ) ) ,  ( ( 2nd `  g
) ( <. ( 2nd `  ( 1st `  x
) ) ,  ( 2nd `  ( 2nd `  x ) ) >.
(comp `  Y )
( 2nd `  y
) ) ( 2nd `  f ) ) >.
) ) >. } )
17 catcxpccl.u . . . . 5  |-  ( ph  ->  U  e. WUni )
18 df-base 15863 . . . . . . 7  |-  Base  = Slot  1
19 catcxpccl.1 . . . . . . . 8  |-  ( ph  ->  om  e.  U )
2017, 19wunndx 15878 . . . . . . 7  |-  ( ph  ->  ndx  e.  U )
2118, 17, 20wunstr 15881 . . . . . 6  |-  ( ph  ->  ( Base `  ndx )  e.  U )
22 inss1 3833 . . . . . . . . 9  |-  ( U  i^i  Cat )  C_  U
23 catcxpccl.c . . . . . . . . . . 11  |-  C  =  (CatCat `  U )
24 catcxpccl.b . . . . . . . . . . 11  |-  B  =  ( Base `  C
)
2523, 24, 17catcbas 16747 . . . . . . . . . 10  |-  ( ph  ->  B  =  ( U  i^i  Cat ) )
268, 25eleqtrd 2703 . . . . . . . . 9  |-  ( ph  ->  X  e.  ( U  i^i  Cat ) )
2722, 26sseldi 3601 . . . . . . . 8  |-  ( ph  ->  X  e.  U )
2818, 17, 27wunstr 15881 . . . . . . 7  |-  ( ph  ->  ( Base `  X
)  e.  U )
299, 25eleqtrd 2703 . . . . . . . . 9  |-  ( ph  ->  Y  e.  ( U  i^i  Cat ) )
3022, 29sseldi 3601 . . . . . . . 8  |-  ( ph  ->  Y  e.  U )
3118, 17, 30wunstr 15881 . . . . . . 7  |-  ( ph  ->  ( Base `  Y
)  e.  U )
3217, 28, 31wunxp 9546 . . . . . 6  |-  ( ph  ->  ( ( Base `  X
)  X.  ( Base `  Y ) )  e.  U )
3317, 21, 32wunop 9544 . . . . 5  |-  ( ph  -> 
<. ( Base `  ndx ) ,  ( ( Base `  X )  X.  ( Base `  Y
) ) >.  e.  U
)
34 df-hom 15966 . . . . . . 7  |-  Hom  = Slot ; 1 4
3534, 17, 20wunstr 15881 . . . . . 6  |-  ( ph  ->  ( Hom  `  ndx )  e.  U )
3617, 32, 32wunxp 9546 . . . . . . . 8  |-  ( ph  ->  ( ( ( Base `  X )  X.  ( Base `  Y ) )  X.  ( ( Base `  X )  X.  ( Base `  Y ) ) )  e.  U )
3734, 17, 27wunstr 15881 . . . . . . . . . . . 12  |-  ( ph  ->  ( Hom  `  X
)  e.  U )
3817, 37wunrn 9551 . . . . . . . . . . 11  |-  ( ph  ->  ran  ( Hom  `  X
)  e.  U )
3917, 38wununi 9528 . . . . . . . . . 10  |-  ( ph  ->  U. ran  ( Hom  `  X )  e.  U
)
4034, 17, 30wunstr 15881 . . . . . . . . . . . 12  |-  ( ph  ->  ( Hom  `  Y
)  e.  U )
4117, 40wunrn 9551 . . . . . . . . . . 11  |-  ( ph  ->  ran  ( Hom  `  Y
)  e.  U )
4217, 41wununi 9528 . . . . . . . . . 10  |-  ( ph  ->  U. ran  ( Hom  `  Y )  e.  U
)
4317, 39, 42wunxp 9546 . . . . . . . . 9  |-  ( ph  ->  ( U. ran  ( Hom  `  X )  X. 
U. ran  ( Hom  `  Y ) )  e.  U )
4417, 43wunpw 9529 . . . . . . . 8  |-  ( ph  ->  ~P ( U. ran  ( Hom  `  X )  X.  U. ran  ( Hom  `  Y ) )  e.  U )
45 ovssunirn 6681 . . . . . . . . . . . . 13  |-  ( ( 1st `  u ) ( Hom  `  X
) ( 1st `  v
) )  C_  U. ran  ( Hom  `  X )
46 ovssunirn 6681 . . . . . . . . . . . . 13  |-  ( ( 2nd `  u ) ( Hom  `  Y
) ( 2nd `  v
) )  C_  U. ran  ( Hom  `  Y )
47 xpss12 5225 . . . . . . . . . . . . 13  |-  ( ( ( ( 1st `  u
) ( Hom  `  X
) ( 1st `  v
) )  C_  U. ran  ( Hom  `  X )  /\  ( ( 2nd `  u
) ( Hom  `  Y
) ( 2nd `  v
) )  C_  U. ran  ( Hom  `  Y )
)  ->  ( (
( 1st `  u
) ( Hom  `  X
) ( 1st `  v
) )  X.  (
( 2nd `  u
) ( Hom  `  Y
) ( 2nd `  v
) ) )  C_  ( U. ran  ( Hom  `  X )  X.  U. ran  ( Hom  `  Y
) ) )
4845, 46, 47mp2an 708 . . . . . . . . . . . 12  |-  ( ( ( 1st `  u
) ( Hom  `  X
) ( 1st `  v
) )  X.  (
( 2nd `  u
) ( Hom  `  Y
) ( 2nd `  v
) ) )  C_  ( U. ran  ( Hom  `  X )  X.  U. ran  ( Hom  `  Y
) )
49 ovex 6678 . . . . . . . . . . . . . 14  |-  ( ( 1st `  u ) ( Hom  `  X
) ( 1st `  v
) )  e.  _V
50 ovex 6678 . . . . . . . . . . . . . 14  |-  ( ( 2nd `  u ) ( Hom  `  Y
) ( 2nd `  v
) )  e.  _V
5149, 50xpex 6962 . . . . . . . . . . . . 13  |-  ( ( ( 1st `  u
) ( Hom  `  X
) ( 1st `  v
) )  X.  (
( 2nd `  u
) ( Hom  `  Y
) ( 2nd `  v
) ) )  e. 
_V
5251elpw 4164 . . . . . . . . . . . 12  |-  ( ( ( ( 1st `  u
) ( Hom  `  X
) ( 1st `  v
) )  X.  (
( 2nd `  u
) ( Hom  `  Y
) ( 2nd `  v
) ) )  e. 
~P ( U. ran  ( Hom  `  X )  X.  U. ran  ( Hom  `  Y ) )  <->  ( (
( 1st `  u
) ( Hom  `  X
) ( 1st `  v
) )  X.  (
( 2nd `  u
) ( Hom  `  Y
) ( 2nd `  v
) ) )  C_  ( U. ran  ( Hom  `  X )  X.  U. ran  ( Hom  `  Y
) ) )
5348, 52mpbir 221 . . . . . . . . . . 11  |-  ( ( ( 1st `  u
) ( Hom  `  X
) ( 1st `  v
) )  X.  (
( 2nd `  u
) ( Hom  `  Y
) ( 2nd `  v
) ) )  e. 
~P ( U. ran  ( Hom  `  X )  X.  U. ran  ( Hom  `  Y ) )
5453rgen2w 2925 . . . . . . . . . 10  |-  A. u  e.  ( ( Base `  X
)  X.  ( Base `  Y ) ) A. v  e.  ( ( Base `  X )  X.  ( Base `  Y
) ) ( ( ( 1st `  u
) ( Hom  `  X
) ( 1st `  v
) )  X.  (
( 2nd `  u
) ( Hom  `  Y
) ( 2nd `  v
) ) )  e. 
~P ( U. ran  ( Hom  `  X )  X.  U. ran  ( Hom  `  Y ) )
55 eqid 2622 . . . . . . . . . . 11  |-  ( u  e.  ( ( Base `  X )  X.  ( Base `  Y ) ) ,  v  e.  ( ( Base `  X
)  X.  ( Base `  Y ) )  |->  ( ( ( 1st `  u
) ( Hom  `  X
) ( 1st `  v
) )  X.  (
( 2nd `  u
) ( Hom  `  Y
) ( 2nd `  v
) ) ) )  =  ( u  e.  ( ( Base `  X
)  X.  ( Base `  Y ) ) ,  v  e.  ( (
Base `  X )  X.  ( Base `  Y
) )  |->  ( ( ( 1st `  u
) ( Hom  `  X
) ( 1st `  v
) )  X.  (
( 2nd `  u
) ( Hom  `  Y
) ( 2nd `  v
) ) ) )
5655fmpt2 7237 . . . . . . . . . 10  |-  ( A. u  e.  ( ( Base `  X )  X.  ( Base `  Y
) ) A. v  e.  ( ( Base `  X
)  X.  ( Base `  Y ) ) ( ( ( 1st `  u
) ( Hom  `  X
) ( 1st `  v
) )  X.  (
( 2nd `  u
) ( Hom  `  Y
) ( 2nd `  v
) ) )  e. 
~P ( U. ran  ( Hom  `  X )  X.  U. ran  ( Hom  `  Y ) )  <->  ( u  e.  ( ( Base `  X
)  X.  ( Base `  Y ) ) ,  v  e.  ( (
Base `  X )  X.  ( Base `  Y
) )  |->  ( ( ( 1st `  u
) ( Hom  `  X
) ( 1st `  v
) )  X.  (
( 2nd `  u
) ( Hom  `  Y
) ( 2nd `  v
) ) ) ) : ( ( (
Base `  X )  X.  ( Base `  Y
) )  X.  (
( Base `  X )  X.  ( Base `  Y
) ) ) --> ~P ( U. ran  ( Hom  `  X )  X. 
U. ran  ( Hom  `  Y ) ) )
5754, 56mpbi 220 . . . . . . . . 9  |-  ( u  e.  ( ( Base `  X )  X.  ( Base `  Y ) ) ,  v  e.  ( ( Base `  X
)  X.  ( Base `  Y ) )  |->  ( ( ( 1st `  u
) ( Hom  `  X
) ( 1st `  v
) )  X.  (
( 2nd `  u
) ( Hom  `  Y
) ( 2nd `  v
) ) ) ) : ( ( (
Base `  X )  X.  ( Base `  Y
) )  X.  (
( Base `  X )  X.  ( Base `  Y
) ) ) --> ~P ( U. ran  ( Hom  `  X )  X. 
U. ran  ( Hom  `  Y ) )
5857a1i 11 . . . . . . . 8  |-  ( ph  ->  ( u  e.  ( ( Base `  X
)  X.  ( Base `  Y ) ) ,  v  e.  ( (
Base `  X )  X.  ( Base `  Y
) )  |->  ( ( ( 1st `  u
) ( Hom  `  X
) ( 1st `  v
) )  X.  (
( 2nd `  u
) ( Hom  `  Y
) ( 2nd `  v
) ) ) ) : ( ( (
Base `  X )  X.  ( Base `  Y
) )  X.  (
( Base `  X )  X.  ( Base `  Y
) ) ) --> ~P ( U. ran  ( Hom  `  X )  X. 
U. ran  ( Hom  `  Y ) ) )
5917, 36, 44, 58wunf 9549 . . . . . . 7  |-  ( ph  ->  ( u  e.  ( ( Base `  X
)  X.  ( Base `  Y ) ) ,  v  e.  ( (
Base `  X )  X.  ( Base `  Y
) )  |->  ( ( ( 1st `  u
) ( Hom  `  X
) ( 1st `  v
) )  X.  (
( 2nd `  u
) ( Hom  `  Y
) ( 2nd `  v
) ) ) )  e.  U )
6013, 59syl5eqel 2705 . . . . . 6  |-  ( ph  ->  ( Hom  `  T
)  e.  U )
6117, 35, 60wunop 9544 . . . . 5  |-  ( ph  -> 
<. ( Hom  `  ndx ) ,  ( Hom  `  T ) >.  e.  U
)
62 df-cco 15967 . . . . . . 7  |- comp  = Slot ; 1 5
6362, 17, 20wunstr 15881 . . . . . 6  |-  ( ph  ->  (comp `  ndx )  e.  U )
6417, 36, 32wunxp 9546 . . . . . . 7  |-  ( ph  ->  ( ( ( (
Base `  X )  X.  ( Base `  Y
) )  X.  (
( Base `  X )  X.  ( Base `  Y
) ) )  X.  ( ( Base `  X
)  X.  ( Base `  Y ) ) )  e.  U )
6562, 17, 27wunstr 15881 . . . . . . . . . . . . . 14  |-  ( ph  ->  (comp `  X )  e.  U )
6617, 65wunrn 9551 . . . . . . . . . . . . 13  |-  ( ph  ->  ran  (comp `  X
)  e.  U )
6717, 66wununi 9528 . . . . . . . . . . . 12  |-  ( ph  ->  U. ran  (comp `  X )  e.  U
)
6817, 67wunrn 9551 . . . . . . . . . . 11  |-  ( ph  ->  ran  U. ran  (comp `  X )  e.  U
)
6917, 68wununi 9528 . . . . . . . . . 10  |-  ( ph  ->  U. ran  U. ran  (comp `  X )  e.  U )
7017, 69wunpw 9529 . . . . . . . . 9  |-  ( ph  ->  ~P U. ran  U. ran  (comp `  X )  e.  U )
7162, 17, 30wunstr 15881 . . . . . . . . . . . . . 14  |-  ( ph  ->  (comp `  Y )  e.  U )
7217, 71wunrn 9551 . . . . . . . . . . . . 13  |-  ( ph  ->  ran  (comp `  Y
)  e.  U )
7317, 72wununi 9528 . . . . . . . . . . . 12  |-  ( ph  ->  U. ran  (comp `  Y )  e.  U
)
7417, 73wunrn 9551 . . . . . . . . . . 11  |-  ( ph  ->  ran  U. ran  (comp `  Y )  e.  U
)
7517, 74wununi 9528 . . . . . . . . . 10  |-  ( ph  ->  U. ran  U. ran  (comp `  Y )  e.  U )
7617, 75wunpw 9529 . . . . . . . . 9  |-  ( ph  ->  ~P U. ran  U. ran  (comp `  Y )  e.  U )
7717, 70, 76wunxp 9546 . . . . . . . 8  |-  ( ph  ->  ( ~P U. ran  U.
ran  (comp `  X )  X.  ~P U. ran  U. ran  (comp `  Y )
)  e.  U )
7817, 60wunrn 9551 . . . . . . . . . 10  |-  ( ph  ->  ran  ( Hom  `  T
)  e.  U )
7917, 78wununi 9528 . . . . . . . . 9  |-  ( ph  ->  U. ran  ( Hom  `  T )  e.  U
)
8017, 79, 79wunxp 9546 . . . . . . . 8  |-  ( ph  ->  ( U. ran  ( Hom  `  T )  X. 
U. ran  ( Hom  `  T ) )  e.  U )
8117, 77, 80wunpm 9547 . . . . . . 7  |-  ( ph  ->  ( ( ~P U. ran  U. ran  (comp `  X )  X.  ~P U.
ran  U. ran  (comp `  Y ) )  ^pm  ( U. ran  ( Hom  `  T )  X.  U. ran  ( Hom  `  T
) ) )  e.  U )
82 fvex 6201 . . . . . . . . . . . . . . . . 17  |-  (comp `  X )  e.  _V
8382rnex 7100 . . . . . . . . . . . . . . . 16  |-  ran  (comp `  X )  e.  _V
8483uniex 6953 . . . . . . . . . . . . . . 15  |-  U. ran  (comp `  X )  e. 
_V
8584rnex 7100 . . . . . . . . . . . . . 14  |-  ran  U. ran  (comp `  X )  e.  _V
8685uniex 6953 . . . . . . . . . . . . 13  |-  U. ran  U.
ran  (comp `  X )  e.  _V
8786pwex 4848 . . . . . . . . . . . 12  |-  ~P U. ran  U. ran  (comp `  X )  e.  _V
88 fvex 6201 . . . . . . . . . . . . . . . . 17  |-  (comp `  Y )  e.  _V
8988rnex 7100 . . . . . . . . . . . . . . . 16  |-  ran  (comp `  Y )  e.  _V
9089uniex 6953 . . . . . . . . . . . . . . 15  |-  U. ran  (comp `  Y )  e. 
_V
9190rnex 7100 . . . . . . . . . . . . . 14  |-  ran  U. ran  (comp `  Y )  e.  _V
9291uniex 6953 . . . . . . . . . . . . 13  |-  U. ran  U.
ran  (comp `  Y )  e.  _V
9392pwex 4848 . . . . . . . . . . . 12  |-  ~P U. ran  U. ran  (comp `  Y )  e.  _V
9487, 93xpex 6962 . . . . . . . . . . 11  |-  ( ~P
U. ran  U. ran  (comp `  X )  X.  ~P U.
ran  U. ran  (comp `  Y ) )  e. 
_V
95 fvex 6201 . . . . . . . . . . . . . 14  |-  ( Hom  `  T )  e.  _V
9695rnex 7100 . . . . . . . . . . . . 13  |-  ran  ( Hom  `  T )  e. 
_V
9796uniex 6953 . . . . . . . . . . . 12  |-  U. ran  ( Hom  `  T )  e.  _V
9897, 97xpex 6962 . . . . . . . . . . 11  |-  ( U. ran  ( Hom  `  T
)  X.  U. ran  ( Hom  `  T )
)  e.  _V
99 ovssunirn 6681 . . . . . . . . . . . . . . . 16  |-  ( ( 1st `  g ) ( <. ( 1st `  ( 1st `  x ) ) ,  ( 1st `  ( 2nd `  x ) )
>. (comp `  X )
( 1st `  y
) ) ( 1st `  f ) )  C_  U.
ran  ( <. ( 1st `  ( 1st `  x
) ) ,  ( 1st `  ( 2nd `  x ) ) >.
(comp `  X )
( 1st `  y
) )
100 ovssunirn 6681 . . . . . . . . . . . . . . . . 17  |-  ( <.
( 1st `  ( 1st `  x ) ) ,  ( 1st `  ( 2nd `  x ) )
>. (comp `  X )
( 1st `  y
) )  C_  U. ran  (comp `  X )
101 rnss 5354 . . . . . . . . . . . . . . . . 17  |-  ( (
<. ( 1st `  ( 1st `  x ) ) ,  ( 1st `  ( 2nd `  x ) )
>. (comp `  X )
( 1st `  y
) )  C_  U. ran  (comp `  X )  ->  ran  ( <. ( 1st `  ( 1st `  x ) ) ,  ( 1st `  ( 2nd `  x ) )
>. (comp `  X )
( 1st `  y
) )  C_  ran  U.
ran  (comp `  X )
)
102 uniss 4458 . . . . . . . . . . . . . . . . 17  |-  ( ran  ( <. ( 1st `  ( 1st `  x ) ) ,  ( 1st `  ( 2nd `  x ) )
>. (comp `  X )
( 1st `  y
) )  C_  ran  U.
ran  (comp `  X )  ->  U. ran  ( <.
( 1st `  ( 1st `  x ) ) ,  ( 1st `  ( 2nd `  x ) )
>. (comp `  X )
( 1st `  y
) )  C_  U. ran  U.
ran  (comp `  X )
)
103100, 101, 102mp2b 10 . . . . . . . . . . . . . . . 16  |-  U. ran  ( <. ( 1st `  ( 1st `  x ) ) ,  ( 1st `  ( 2nd `  x ) )
>. (comp `  X )
( 1st `  y
) )  C_  U. ran  U.
ran  (comp `  X )
10499, 103sstri 3612 . . . . . . . . . . . . . . 15  |-  ( ( 1st `  g ) ( <. ( 1st `  ( 1st `  x ) ) ,  ( 1st `  ( 2nd `  x ) )
>. (comp `  X )
( 1st `  y
) ) ( 1st `  f ) )  C_  U.
ran  U. ran  (comp `  X )
105 ovex 6678 . . . . . . . . . . . . . . . 16  |-  ( ( 1st `  g ) ( <. ( 1st `  ( 1st `  x ) ) ,  ( 1st `  ( 2nd `  x ) )
>. (comp `  X )
( 1st `  y
) ) ( 1st `  f ) )  e. 
_V
106105elpw 4164 . . . . . . . . . . . . . . 15  |-  ( ( ( 1st `  g
) ( <. ( 1st `  ( 1st `  x
) ) ,  ( 1st `  ( 2nd `  x ) ) >.
(comp `  X )
( 1st `  y
) ) ( 1st `  f ) )  e. 
~P U. ran  U. ran  (comp `  X )  <->  ( ( 1st `  g ) (
<. ( 1st `  ( 1st `  x ) ) ,  ( 1st `  ( 2nd `  x ) )
>. (comp `  X )
( 1st `  y
) ) ( 1st `  f ) )  C_  U.
ran  U. ran  (comp `  X ) )
107104, 106mpbir 221 . . . . . . . . . . . . . 14  |-  ( ( 1st `  g ) ( <. ( 1st `  ( 1st `  x ) ) ,  ( 1st `  ( 2nd `  x ) )
>. (comp `  X )
( 1st `  y
) ) ( 1st `  f ) )  e. 
~P U. ran  U. ran  (comp `  X )
108 ovssunirn 6681 . . . . . . . . . . . . . . . 16  |-  ( ( 2nd `  g ) ( <. ( 2nd `  ( 1st `  x ) ) ,  ( 2nd `  ( 2nd `  x ) )
>. (comp `  Y )
( 2nd `  y
) ) ( 2nd `  f ) )  C_  U.
ran  ( <. ( 2nd `  ( 1st `  x
) ) ,  ( 2nd `  ( 2nd `  x ) ) >.
(comp `  Y )
( 2nd `  y
) )
109 ovssunirn 6681 . . . . . . . . . . . . . . . . 17  |-  ( <.
( 2nd `  ( 1st `  x ) ) ,  ( 2nd `  ( 2nd `  x ) )
>. (comp `  Y )
( 2nd `  y
) )  C_  U. ran  (comp `  Y )
110 rnss 5354 . . . . . . . . . . . . . . . . 17  |-  ( (
<. ( 2nd `  ( 1st `  x ) ) ,  ( 2nd `  ( 2nd `  x ) )
>. (comp `  Y )
( 2nd `  y
) )  C_  U. ran  (comp `  Y )  ->  ran  ( <. ( 2nd `  ( 1st `  x ) ) ,  ( 2nd `  ( 2nd `  x ) )
>. (comp `  Y )
( 2nd `  y
) )  C_  ran  U.
ran  (comp `  Y )
)
111 uniss 4458 . . . . . . . . . . . . . . . . 17  |-  ( ran  ( <. ( 2nd `  ( 1st `  x ) ) ,  ( 2nd `  ( 2nd `  x ) )
>. (comp `  Y )
( 2nd `  y
) )  C_  ran  U.
ran  (comp `  Y )  ->  U. ran  ( <.
( 2nd `  ( 1st `  x ) ) ,  ( 2nd `  ( 2nd `  x ) )
>. (comp `  Y )
( 2nd `  y
) )  C_  U. ran  U.
ran  (comp `  Y )
)
112109, 110, 111mp2b 10 . . . . . . . . . . . . . . . 16  |-  U. ran  ( <. ( 2nd `  ( 1st `  x ) ) ,  ( 2nd `  ( 2nd `  x ) )
>. (comp `  Y )
( 2nd `  y
) )  C_  U. ran  U.
ran  (comp `  Y )
113108, 112sstri 3612 . . . . . . . . . . . . . . 15  |-  ( ( 2nd `  g ) ( <. ( 2nd `  ( 1st `  x ) ) ,  ( 2nd `  ( 2nd `  x ) )
>. (comp `  Y )
( 2nd `  y
) ) ( 2nd `  f ) )  C_  U.
ran  U. ran  (comp `  Y )
114 ovex 6678 . . . . . . . . . . . . . . . 16  |-  ( ( 2nd `  g ) ( <. ( 2nd `  ( 1st `  x ) ) ,  ( 2nd `  ( 2nd `  x ) )
>. (comp `  Y )
( 2nd `  y
) ) ( 2nd `  f ) )  e. 
_V
115114elpw 4164 . . . . . . . . . . . . . . 15  |-  ( ( ( 2nd `  g
) ( <. ( 2nd `  ( 1st `  x
) ) ,  ( 2nd `  ( 2nd `  x ) ) >.
(comp `  Y )
( 2nd `  y
) ) ( 2nd `  f ) )  e. 
~P U. ran  U. ran  (comp `  Y )  <->  ( ( 2nd `  g ) (
<. ( 2nd `  ( 1st `  x ) ) ,  ( 2nd `  ( 2nd `  x ) )
>. (comp `  Y )
( 2nd `  y
) ) ( 2nd `  f ) )  C_  U.
ran  U. ran  (comp `  Y ) )
116113, 115mpbir 221 . . . . . . . . . . . . . 14  |-  ( ( 2nd `  g ) ( <. ( 2nd `  ( 1st `  x ) ) ,  ( 2nd `  ( 2nd `  x ) )
>. (comp `  Y )
( 2nd `  y
) ) ( 2nd `  f ) )  e. 
~P U. ran  U. ran  (comp `  Y )
117 opelxpi 5148 . . . . . . . . . . . . . 14  |-  ( ( ( ( 1st `  g
) ( <. ( 1st `  ( 1st `  x
) ) ,  ( 1st `  ( 2nd `  x ) ) >.
(comp `  X )
( 1st `  y
) ) ( 1st `  f ) )  e. 
~P U. ran  U. ran  (comp `  X )  /\  ( ( 2nd `  g
) ( <. ( 2nd `  ( 1st `  x
) ) ,  ( 2nd `  ( 2nd `  x ) ) >.
(comp `  Y )
( 2nd `  y
) ) ( 2nd `  f ) )  e. 
~P U. ran  U. ran  (comp `  Y ) )  ->  <. ( ( 1st `  g ) ( <.
( 1st `  ( 1st `  x ) ) ,  ( 1st `  ( 2nd `  x ) )
>. (comp `  X )
( 1st `  y
) ) ( 1st `  f ) ) ,  ( ( 2nd `  g
) ( <. ( 2nd `  ( 1st `  x
) ) ,  ( 2nd `  ( 2nd `  x ) ) >.
(comp `  Y )
( 2nd `  y
) ) ( 2nd `  f ) ) >.  e.  ( ~P U. ran  U.
ran  (comp `  X )  X.  ~P U. ran  U. ran  (comp `  Y )
) )
118107, 116, 117mp2an 708 . . . . . . . . . . . . 13  |-  <. (
( 1st `  g
) ( <. ( 1st `  ( 1st `  x
) ) ,  ( 1st `  ( 2nd `  x ) ) >.
(comp `  X )
( 1st `  y
) ) ( 1st `  f ) ) ,  ( ( 2nd `  g
) ( <. ( 2nd `  ( 1st `  x
) ) ,  ( 2nd `  ( 2nd `  x ) ) >.
(comp `  Y )
( 2nd `  y
) ) ( 2nd `  f ) ) >.  e.  ( ~P U. ran  U.
ran  (comp `  X )  X.  ~P U. ran  U. ran  (comp `  Y )
)
119118rgen2w 2925 . . . . . . . . . . . 12  |-  A. g  e.  ( ( 2nd `  x
) ( Hom  `  T
) y ) A. f  e.  ( ( Hom  `  T ) `  x ) <. (
( 1st `  g
) ( <. ( 1st `  ( 1st `  x
) ) ,  ( 1st `  ( 2nd `  x ) ) >.
(comp `  X )
( 1st `  y
) ) ( 1st `  f ) ) ,  ( ( 2nd `  g
) ( <. ( 2nd `  ( 1st `  x
) ) ,  ( 2nd `  ( 2nd `  x ) ) >.
(comp `  Y )
( 2nd `  y
) ) ( 2nd `  f ) ) >.  e.  ( ~P U. ran  U.
ran  (comp `  X )  X.  ~P U. ran  U. ran  (comp `  Y )
)
120 eqid 2622 . . . . . . . . . . . . 13  |-  ( g  e.  ( ( 2nd `  x ) ( Hom  `  T ) y ) ,  f  e.  ( ( Hom  `  T
) `  x )  |-> 
<. ( ( 1st `  g
) ( <. ( 1st `  ( 1st `  x
) ) ,  ( 1st `  ( 2nd `  x ) ) >.
(comp `  X )
( 1st `  y
) ) ( 1st `  f ) ) ,  ( ( 2nd `  g
) ( <. ( 2nd `  ( 1st `  x
) ) ,  ( 2nd `  ( 2nd `  x ) ) >.
(comp `  Y )
( 2nd `  y
) ) ( 2nd `  f ) ) >.
)  =  ( g  e.  ( ( 2nd `  x ) ( Hom  `  T ) y ) ,  f  e.  ( ( Hom  `  T
) `  x )  |-> 
<. ( ( 1st `  g
) ( <. ( 1st `  ( 1st `  x
) ) ,  ( 1st `  ( 2nd `  x ) ) >.
(comp `  X )
( 1st `  y
) ) ( 1st `  f ) ) ,  ( ( 2nd `  g
) ( <. ( 2nd `  ( 1st `  x
) ) ,  ( 2nd `  ( 2nd `  x ) ) >.
(comp `  Y )
( 2nd `  y
) ) ( 2nd `  f ) ) >.
)
121120fmpt2 7237 . . . . . . . . . . . 12  |-  ( A. g  e.  ( ( 2nd `  x ) ( Hom  `  T )
y ) A. f  e.  ( ( Hom  `  T
) `  x ) <. ( ( 1st `  g
) ( <. ( 1st `  ( 1st `  x
) ) ,  ( 1st `  ( 2nd `  x ) ) >.
(comp `  X )
( 1st `  y
) ) ( 1st `  f ) ) ,  ( ( 2nd `  g
) ( <. ( 2nd `  ( 1st `  x
) ) ,  ( 2nd `  ( 2nd `  x ) ) >.
(comp `  Y )
( 2nd `  y
) ) ( 2nd `  f ) ) >.  e.  ( ~P U. ran  U.
ran  (comp `  X )  X.  ~P U. ran  U. ran  (comp `  Y )
)  <->  ( g  e.  ( ( 2nd `  x
) ( Hom  `  T
) y ) ,  f  e.  ( ( Hom  `  T ) `  x )  |->  <. (
( 1st `  g
) ( <. ( 1st `  ( 1st `  x
) ) ,  ( 1st `  ( 2nd `  x ) ) >.
(comp `  X )
( 1st `  y
) ) ( 1st `  f ) ) ,  ( ( 2nd `  g
) ( <. ( 2nd `  ( 1st `  x
) ) ,  ( 2nd `  ( 2nd `  x ) ) >.
(comp `  Y )
( 2nd `  y
) ) ( 2nd `  f ) ) >.
) : ( ( ( 2nd `  x
) ( Hom  `  T
) y )  X.  ( ( Hom  `  T
) `  x )
) --> ( ~P U. ran  U. ran  (comp `  X )  X.  ~P U.
ran  U. ran  (comp `  Y ) ) )
122119, 121mpbi 220 . . . . . . . . . . 11  |-  ( g  e.  ( ( 2nd `  x ) ( Hom  `  T ) y ) ,  f  e.  ( ( Hom  `  T
) `  x )  |-> 
<. ( ( 1st `  g
) ( <. ( 1st `  ( 1st `  x
) ) ,  ( 1st `  ( 2nd `  x ) ) >.
(comp `  X )
( 1st `  y
) ) ( 1st `  f ) ) ,  ( ( 2nd `  g
) ( <. ( 2nd `  ( 1st `  x
) ) ,  ( 2nd `  ( 2nd `  x ) ) >.
(comp `  Y )
( 2nd `  y
) ) ( 2nd `  f ) ) >.
) : ( ( ( 2nd `  x
) ( Hom  `  T
) y )  X.  ( ( Hom  `  T
) `  x )
) --> ( ~P U. ran  U. ran  (comp `  X )  X.  ~P U.
ran  U. ran  (comp `  Y ) )
123 ovssunirn 6681 . . . . . . . . . . . 12  |-  ( ( 2nd `  x ) ( Hom  `  T
) y )  C_  U.
ran  ( Hom  `  T
)
124 fvssunirn 6217 . . . . . . . . . . . 12  |-  ( ( Hom  `  T ) `  x )  C_  U. ran  ( Hom  `  T )
125 xpss12 5225 . . . . . . . . . . . 12  |-  ( ( ( ( 2nd `  x
) ( Hom  `  T
) y )  C_  U.
ran  ( Hom  `  T
)  /\  ( ( Hom  `  T ) `  x )  C_  U. ran  ( Hom  `  T )
)  ->  ( (
( 2nd `  x
) ( Hom  `  T
) y )  X.  ( ( Hom  `  T
) `  x )
)  C_  ( U. ran  ( Hom  `  T
)  X.  U. ran  ( Hom  `  T )
) )
126123, 124, 125mp2an 708 . . . . . . . . . . 11  |-  ( ( ( 2nd `  x
) ( Hom  `  T
) y )  X.  ( ( Hom  `  T
) `  x )
)  C_  ( U. ran  ( Hom  `  T
)  X.  U. ran  ( Hom  `  T )
)
127 elpm2r 7875 . . . . . . . . . . 11  |-  ( ( ( ( ~P U. ran  U. ran  (comp `  X )  X.  ~P U.
ran  U. ran  (comp `  Y ) )  e. 
_V  /\  ( U. ran  ( Hom  `  T
)  X.  U. ran  ( Hom  `  T )
)  e.  _V )  /\  ( ( g  e.  ( ( 2nd `  x
) ( Hom  `  T
) y ) ,  f  e.  ( ( Hom  `  T ) `  x )  |->  <. (
( 1st `  g
) ( <. ( 1st `  ( 1st `  x
) ) ,  ( 1st `  ( 2nd `  x ) ) >.
(comp `  X )
( 1st `  y
) ) ( 1st `  f ) ) ,  ( ( 2nd `  g
) ( <. ( 2nd `  ( 1st `  x
) ) ,  ( 2nd `  ( 2nd `  x ) ) >.
(comp `  Y )
( 2nd `  y
) ) ( 2nd `  f ) ) >.
) : ( ( ( 2nd `  x
) ( Hom  `  T
) y )  X.  ( ( Hom  `  T
) `  x )
) --> ( ~P U. ran  U. ran  (comp `  X )  X.  ~P U.
ran  U. ran  (comp `  Y ) )  /\  ( ( ( 2nd `  x ) ( Hom  `  T ) y )  X.  ( ( Hom  `  T ) `  x
) )  C_  ( U. ran  ( Hom  `  T
)  X.  U. ran  ( Hom  `  T )
) ) )  -> 
( g  e.  ( ( 2nd `  x
) ( Hom  `  T
) y ) ,  f  e.  ( ( Hom  `  T ) `  x )  |->  <. (
( 1st `  g
) ( <. ( 1st `  ( 1st `  x
) ) ,  ( 1st `  ( 2nd `  x ) ) >.
(comp `  X )
( 1st `  y
) ) ( 1st `  f ) ) ,  ( ( 2nd `  g
) ( <. ( 2nd `  ( 1st `  x
) ) ,  ( 2nd `  ( 2nd `  x ) ) >.
(comp `  Y )
( 2nd `  y
) ) ( 2nd `  f ) ) >.
)  e.  ( ( ~P U. ran  U. ran  (comp `  X )  X.  ~P U. ran  U. ran  (comp `  Y )
)  ^pm  ( U. ran  ( Hom  `  T
)  X.  U. ran  ( Hom  `  T )
) ) )
12894, 98, 122, 126, 127mp4an 709 . . . . . . . . . 10  |-  ( g  e.  ( ( 2nd `  x ) ( Hom  `  T ) y ) ,  f  e.  ( ( Hom  `  T
) `  x )  |-> 
<. ( ( 1st `  g
) ( <. ( 1st `  ( 1st `  x
) ) ,  ( 1st `  ( 2nd `  x ) ) >.
(comp `  X )
( 1st `  y
) ) ( 1st `  f ) ) ,  ( ( 2nd `  g
) ( <. ( 2nd `  ( 1st `  x
) ) ,  ( 2nd `  ( 2nd `  x ) ) >.
(comp `  Y )
( 2nd `  y
) ) ( 2nd `  f ) ) >.
)  e.  ( ( ~P U. ran  U. ran  (comp `  X )  X.  ~P U. ran  U. ran  (comp `  Y )
)  ^pm  ( U. ran  ( Hom  `  T
)  X.  U. ran  ( Hom  `  T )
) )
129128rgen2w 2925 . . . . . . . . 9  |-  A. x  e.  ( ( ( Base `  X )  X.  ( Base `  Y ) )  X.  ( ( Base `  X )  X.  ( Base `  Y ) ) ) A. y  e.  ( ( Base `  X
)  X.  ( Base `  Y ) ) ( g  e.  ( ( 2nd `  x ) ( Hom  `  T
) y ) ,  f  e.  ( ( Hom  `  T ) `  x )  |->  <. (
( 1st `  g
) ( <. ( 1st `  ( 1st `  x
) ) ,  ( 1st `  ( 2nd `  x ) ) >.
(comp `  X )
( 1st `  y
) ) ( 1st `  f ) ) ,  ( ( 2nd `  g
) ( <. ( 2nd `  ( 1st `  x
) ) ,  ( 2nd `  ( 2nd `  x ) ) >.
(comp `  Y )
( 2nd `  y
) ) ( 2nd `  f ) ) >.
)  e.  ( ( ~P U. ran  U. ran  (comp `  X )  X.  ~P U. ran  U. ran  (comp `  Y )
)  ^pm  ( U. ran  ( Hom  `  T
)  X.  U. ran  ( Hom  `  T )
) )
130 eqid 2622 . . . . . . . . . 10  |-  ( x  e.  ( ( (
Base `  X )  X.  ( Base `  Y
) )  X.  (
( Base `  X )  X.  ( Base `  Y
) ) ) ,  y  e.  ( (
Base `  X )  X.  ( Base `  Y
) )  |->  ( g  e.  ( ( 2nd `  x ) ( Hom  `  T ) y ) ,  f  e.  ( ( Hom  `  T
) `  x )  |-> 
<. ( ( 1st `  g
) ( <. ( 1st `  ( 1st `  x
) ) ,  ( 1st `  ( 2nd `  x ) ) >.
(comp `  X )
( 1st `  y
) ) ( 1st `  f ) ) ,  ( ( 2nd `  g
) ( <. ( 2nd `  ( 1st `  x
) ) ,  ( 2nd `  ( 2nd `  x ) ) >.
(comp `  Y )
( 2nd `  y
) ) ( 2nd `  f ) ) >.
) )  =  ( x  e.  ( ( ( Base `  X
)  X.  ( Base `  Y ) )  X.  ( ( Base `  X
)  X.  ( Base `  Y ) ) ) ,  y  e.  ( ( Base `  X
)  X.  ( Base `  Y ) )  |->  ( g  e.  ( ( 2nd `  x ) ( Hom  `  T
) y ) ,  f  e.  ( ( Hom  `  T ) `  x )  |->  <. (
( 1st `  g
) ( <. ( 1st `  ( 1st `  x
) ) ,  ( 1st `  ( 2nd `  x ) ) >.
(comp `  X )
( 1st `  y
) ) ( 1st `  f ) ) ,  ( ( 2nd `  g
) ( <. ( 2nd `  ( 1st `  x
) ) ,  ( 2nd `  ( 2nd `  x ) ) >.
(comp `  Y )
( 2nd `  y
) ) ( 2nd `  f ) ) >.
) )
131130fmpt2 7237 . . . . . . . . 9  |-  ( A. x  e.  ( (
( Base `  X )  X.  ( Base `  Y
) )  X.  (
( Base `  X )  X.  ( Base `  Y
) ) ) A. y  e.  ( ( Base `  X )  X.  ( Base `  Y
) ) ( g  e.  ( ( 2nd `  x ) ( Hom  `  T ) y ) ,  f  e.  ( ( Hom  `  T
) `  x )  |-> 
<. ( ( 1st `  g
) ( <. ( 1st `  ( 1st `  x
) ) ,  ( 1st `  ( 2nd `  x ) ) >.
(comp `  X )
( 1st `  y
) ) ( 1st `  f ) ) ,  ( ( 2nd `  g
) ( <. ( 2nd `  ( 1st `  x
) ) ,  ( 2nd `  ( 2nd `  x ) ) >.
(comp `  Y )
( 2nd `  y
) ) ( 2nd `  f ) ) >.
)  e.  ( ( ~P U. ran  U. ran  (comp `  X )  X.  ~P U. ran  U. ran  (comp `  Y )
)  ^pm  ( U. ran  ( Hom  `  T
)  X.  U. ran  ( Hom  `  T )
) )  <->  ( x  e.  ( ( ( Base `  X )  X.  ( Base `  Y ) )  X.  ( ( Base `  X )  X.  ( Base `  Y ) ) ) ,  y  e.  ( ( Base `  X
)  X.  ( Base `  Y ) )  |->  ( g  e.  ( ( 2nd `  x ) ( Hom  `  T
) y ) ,  f  e.  ( ( Hom  `  T ) `  x )  |->  <. (
( 1st `  g
) ( <. ( 1st `  ( 1st `  x
) ) ,  ( 1st `  ( 2nd `  x ) ) >.
(comp `  X )
( 1st `  y
) ) ( 1st `  f ) ) ,  ( ( 2nd `  g
) ( <. ( 2nd `  ( 1st `  x
) ) ,  ( 2nd `  ( 2nd `  x ) ) >.
(comp `  Y )
( 2nd `  y
) ) ( 2nd `  f ) ) >.
) ) : ( ( ( ( Base `  X )  X.  ( Base `  Y ) )  X.  ( ( Base `  X )  X.  ( Base `  Y ) ) )  X.  ( (
Base `  X )  X.  ( Base `  Y
) ) ) --> ( ( ~P U. ran  U.
ran  (comp `  X )  X.  ~P U. ran  U. ran  (comp `  Y )
)  ^pm  ( U. ran  ( Hom  `  T
)  X.  U. ran  ( Hom  `  T )
) ) )
132129, 131mpbi 220 . . . . . . . 8  |-  ( x  e.  ( ( (
Base `  X )  X.  ( Base `  Y
) )  X.  (
( Base `  X )  X.  ( Base `  Y
) ) ) ,  y  e.  ( (
Base `  X )  X.  ( Base `  Y
) )  |->  ( g  e.  ( ( 2nd `  x ) ( Hom  `  T ) y ) ,  f  e.  ( ( Hom  `  T
) `  x )  |-> 
<. ( ( 1st `  g
) ( <. ( 1st `  ( 1st `  x
) ) ,  ( 1st `  ( 2nd `  x ) ) >.
(comp `  X )
( 1st `  y
) ) ( 1st `  f ) ) ,  ( ( 2nd `  g
) ( <. ( 2nd `  ( 1st `  x
) ) ,  ( 2nd `  ( 2nd `  x ) ) >.
(comp `  Y )
( 2nd `  y
) ) ( 2nd `  f ) ) >.
) ) : ( ( ( ( Base `  X )  X.  ( Base `  Y ) )  X.  ( ( Base `  X )  X.  ( Base `  Y ) ) )  X.  ( (
Base `  X )  X.  ( Base `  Y
) ) ) --> ( ( ~P U. ran  U.
ran  (comp `  X )  X.  ~P U. ran  U. ran  (comp `  Y )
)  ^pm  ( U. ran  ( Hom  `  T
)  X.  U. ran  ( Hom  `  T )
) )
133132a1i 11 . . . . . . 7  |-  ( ph  ->  ( x  e.  ( ( ( Base `  X
)  X.  ( Base `  Y ) )  X.  ( ( Base `  X
)  X.  ( Base `  Y ) ) ) ,  y  e.  ( ( Base `  X
)  X.  ( Base `  Y ) )  |->  ( g  e.  ( ( 2nd `  x ) ( Hom  `  T
) y ) ,  f  e.  ( ( Hom  `  T ) `  x )  |->  <. (
( 1st `  g
) ( <. ( 1st `  ( 1st `  x
) ) ,  ( 1st `  ( 2nd `  x ) ) >.
(comp `  X )
( 1st `  y
) ) ( 1st `  f ) ) ,  ( ( 2nd `  g
) ( <. ( 2nd `  ( 1st `  x
) ) ,  ( 2nd `  ( 2nd `  x ) ) >.
(comp `  Y )
( 2nd `  y
) ) ( 2nd `  f ) ) >.
) ) : ( ( ( ( Base `  X )  X.  ( Base `  Y ) )  X.  ( ( Base `  X )  X.  ( Base `  Y ) ) )  X.  ( (
Base `  X )  X.  ( Base `  Y
) ) ) --> ( ( ~P U. ran  U.
ran  (comp `  X )  X.  ~P U. ran  U. ran  (comp `  Y )
)  ^pm  ( U. ran  ( Hom  `  T
)  X.  U. ran  ( Hom  `  T )
) ) )
13417, 64, 81, 133wunf 9549 . . . . . 6  |-  ( ph  ->  ( x  e.  ( ( ( Base `  X
)  X.  ( Base `  Y ) )  X.  ( ( Base `  X
)  X.  ( Base `  Y ) ) ) ,  y  e.  ( ( Base `  X
)  X.  ( Base `  Y ) )  |->  ( g  e.  ( ( 2nd `  x ) ( Hom  `  T
) y ) ,  f  e.  ( ( Hom  `  T ) `  x )  |->  <. (
( 1st `  g
) ( <. ( 1st `  ( 1st `  x
) ) ,  ( 1st `  ( 2nd `  x ) ) >.
(comp `  X )
( 1st `  y
) ) ( 1st `  f ) ) ,  ( ( 2nd `  g
) ( <. ( 2nd `  ( 1st `  x
) ) ,  ( 2nd `  ( 2nd `  x ) ) >.
(comp `  Y )
( 2nd `  y
) ) ( 2nd `  f ) ) >.
) )  e.  U
)
13517, 63, 134wunop 9544 . . . . 5  |-  ( ph  -> 
<. (comp `  ndx ) ,  ( x  e.  ( ( ( Base `  X
)  X.  ( Base `  Y ) )  X.  ( ( Base `  X
)  X.  ( Base `  Y ) ) ) ,  y  e.  ( ( Base `  X
)  X.  ( Base `  Y ) )  |->  ( g  e.  ( ( 2nd `  x ) ( Hom  `  T
) y ) ,  f  e.  ( ( Hom  `  T ) `  x )  |->  <. (
( 1st `  g
) ( <. ( 1st `  ( 1st `  x
) ) ,  ( 1st `  ( 2nd `  x ) ) >.
(comp `  X )
( 1st `  y
) ) ( 1st `  f ) ) ,  ( ( 2nd `  g
) ( <. ( 2nd `  ( 1st `  x
) ) ,  ( 2nd `  ( 2nd `  x ) ) >.
(comp `  Y )
( 2nd `  y
) ) ( 2nd `  f ) ) >.
) ) >.  e.  U
)
13617, 33, 61, 135wuntp 9533 . . . 4  |-  ( ph  ->  { <. ( Base `  ndx ) ,  ( ( Base `  X )  X.  ( Base `  Y
) ) >. ,  <. ( Hom  `  ndx ) ,  ( Hom  `  T
) >. ,  <. (comp ` 
ndx ) ,  ( x  e.  ( ( ( Base `  X
)  X.  ( Base `  Y ) )  X.  ( ( Base `  X
)  X.  ( Base `  Y ) ) ) ,  y  e.  ( ( Base `  X
)  X.  ( Base `  Y ) )  |->  ( g  e.  ( ( 2nd `  x ) ( Hom  `  T
) y ) ,  f  e.  ( ( Hom  `  T ) `  x )  |->  <. (
( 1st `  g
) ( <. ( 1st `  ( 1st `  x
) ) ,  ( 1st `  ( 2nd `  x ) ) >.
(comp `  X )
( 1st `  y
) ) ( 1st `  f ) ) ,  ( ( 2nd `  g
) ( <. ( 2nd `  ( 1st `  x
) ) ,  ( 2nd `  ( 2nd `  x ) ) >.
(comp `  Y )
( 2nd `  y
) ) ( 2nd `  f ) ) >.
) ) >. }  e.  U )
13716, 136eqeltrd 2701 . . 3  |-  ( ph  ->  T  e.  U )
138 inss2 3834 . . . . 5  |-  ( U  i^i  Cat )  C_  Cat
139138, 26sseldi 3601 . . . 4  |-  ( ph  ->  X  e.  Cat )
140138, 29sseldi 3601 . . . 4  |-  ( ph  ->  Y  e.  Cat )
1411, 139, 140xpccat 16830 . . 3  |-  ( ph  ->  T  e.  Cat )
142137, 141elind 3798 . 2  |-  ( ph  ->  T  e.  ( U  i^i  Cat ) )
143142, 25eleqtrrd 2704 1  |-  ( ph  ->  T  e.  B )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1483    e. wcel 1990   A.wral 2912   _Vcvv 3200    i^i cin 3573    C_ wss 3574   ~Pcpw 4158   {ctp 4181   <.cop 4183   U.cuni 4436    X. cxp 5112   ran crn 5115   -->wf 5884   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652   omcom 7065   1stc1st 7166   2ndc2nd 7167    ^pm cpm 7858  WUnicwun 9522   1c1 9937   4c4 11072   5c5 11073  ;cdc 11493   ndxcnx 15854   Basecbs 15857   Hom chom 15952  compcco 15953   Catccat 16325  CatCatccatc 16744    X.c cxpc 16808
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-omul 7565  df-er 7742  df-ec 7744  df-qs 7748  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-wun 9524  df-ni 9694  df-pli 9695  df-mi 9696  df-lti 9697  df-plpq 9730  df-mpq 9731  df-ltpq 9732  df-enq 9733  df-nq 9734  df-erq 9735  df-plq 9736  df-mq 9737  df-1nq 9738  df-rq 9739  df-ltnq 9740  df-np 9803  df-plp 9805  df-ltp 9807  df-enr 9877  df-nr 9878  df-c 9942  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-fz 12327  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-hom 15966  df-cco 15967  df-cat 16329  df-cid 16330  df-catc 16745  df-xpc 16812
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator