MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  catcoppccl Structured version   Visualization version   Unicode version

Theorem catcoppccl 16758
Description: The category of categories for a weak universe is closed under taking opposites. (Contributed by Mario Carneiro, 12-Jan-2017.)
Hypotheses
Ref Expression
catcoppccl.c  |-  C  =  (CatCat `  U )
catcoppccl.b  |-  B  =  ( Base `  C
)
catcoppccl.o  |-  O  =  (oppCat `  X )
catcoppccl.1  |-  ( ph  ->  U  e. WUni )
catcoppccl.2  |-  ( ph  ->  om  e.  U )
catcoppccl.3  |-  ( ph  ->  X  e.  B )
Assertion
Ref Expression
catcoppccl  |-  ( ph  ->  O  e.  B )

Proof of Theorem catcoppccl
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 catcoppccl.3 . . . . 5  |-  ( ph  ->  X  e.  B )
2 eqid 2622 . . . . . 6  |-  ( Base `  X )  =  (
Base `  X )
3 eqid 2622 . . . . . 6  |-  ( Hom  `  X )  =  ( Hom  `  X )
4 eqid 2622 . . . . . 6  |-  (comp `  X )  =  (comp `  X )
5 catcoppccl.o . . . . . 6  |-  O  =  (oppCat `  X )
62, 3, 4, 5oppcval 16373 . . . . 5  |-  ( X  e.  B  ->  O  =  ( ( X sSet  <. ( Hom  `  ndx ) , tpos  ( Hom  `  X ) >. ) sSet  <.
(comp `  ndx ) ,  ( x  e.  ( ( Base `  X
)  X.  ( Base `  X ) ) ,  y  e.  ( Base `  X )  |-> tpos  ( <.
y ,  ( 2nd `  x ) >. (comp `  X ) ( 1st `  x ) ) )
>. ) )
71, 6syl 17 . . . 4  |-  ( ph  ->  O  =  ( ( X sSet  <. ( Hom  `  ndx ) , tpos  ( Hom  `  X ) >. ) sSet  <.
(comp `  ndx ) ,  ( x  e.  ( ( Base `  X
)  X.  ( Base `  X ) ) ,  y  e.  ( Base `  X )  |-> tpos  ( <.
y ,  ( 2nd `  x ) >. (comp `  X ) ( 1st `  x ) ) )
>. ) )
8 catcoppccl.1 . . . . 5  |-  ( ph  ->  U  e. WUni )
9 inss1 3833 . . . . . . 7  |-  ( U  i^i  Cat )  C_  U
10 catcoppccl.c . . . . . . . . 9  |-  C  =  (CatCat `  U )
11 catcoppccl.b . . . . . . . . 9  |-  B  =  ( Base `  C
)
1210, 11, 8catcbas 16747 . . . . . . . 8  |-  ( ph  ->  B  =  ( U  i^i  Cat ) )
131, 12eleqtrd 2703 . . . . . . 7  |-  ( ph  ->  X  e.  ( U  i^i  Cat ) )
149, 13sseldi 3601 . . . . . 6  |-  ( ph  ->  X  e.  U )
15 df-hom 15966 . . . . . . . 8  |-  Hom  = Slot ; 1 4
16 catcoppccl.2 . . . . . . . . 9  |-  ( ph  ->  om  e.  U )
178, 16wunndx 15878 . . . . . . . 8  |-  ( ph  ->  ndx  e.  U )
1815, 8, 17wunstr 15881 . . . . . . 7  |-  ( ph  ->  ( Hom  `  ndx )  e.  U )
1915, 8, 14wunstr 15881 . . . . . . . 8  |-  ( ph  ->  ( Hom  `  X
)  e.  U )
208, 19wuntpos 9556 . . . . . . 7  |-  ( ph  -> tpos  ( Hom  `  X
)  e.  U )
218, 18, 20wunop 9544 . . . . . 6  |-  ( ph  -> 
<. ( Hom  `  ndx ) , tpos  ( Hom  `  X ) >.  e.  U
)
228, 14, 21wunsets 15900 . . . . 5  |-  ( ph  ->  ( X sSet  <. ( Hom  `  ndx ) , tpos  ( Hom  `  X
) >. )  e.  U
)
23 df-cco 15967 . . . . . . 7  |- comp  = Slot ; 1 5
2423, 8, 17wunstr 15881 . . . . . 6  |-  ( ph  ->  (comp `  ndx )  e.  U )
25 df-base 15863 . . . . . . . . . 10  |-  Base  = Slot  1
2625, 8, 14wunstr 15881 . . . . . . . . 9  |-  ( ph  ->  ( Base `  X
)  e.  U )
278, 26, 26wunxp 9546 . . . . . . . 8  |-  ( ph  ->  ( ( Base `  X
)  X.  ( Base `  X ) )  e.  U )
288, 27, 26wunxp 9546 . . . . . . 7  |-  ( ph  ->  ( ( ( Base `  X )  X.  ( Base `  X ) )  X.  ( Base `  X
) )  e.  U
)
2923, 8, 14wunstr 15881 . . . . . . . . . . . . . 14  |-  ( ph  ->  (comp `  X )  e.  U )
308, 29wunrn 9551 . . . . . . . . . . . . 13  |-  ( ph  ->  ran  (comp `  X
)  e.  U )
318, 30wununi 9528 . . . . . . . . . . . 12  |-  ( ph  ->  U. ran  (comp `  X )  e.  U
)
328, 31wundm 9550 . . . . . . . . . . 11  |-  ( ph  ->  dom  U. ran  (comp `  X )  e.  U
)
338, 32wuncnv 9552 . . . . . . . . . 10  |-  ( ph  ->  `' dom  U. ran  (comp `  X )  e.  U
)
348wun0 9540 . . . . . . . . . . 11  |-  ( ph  -> 
(/)  e.  U )
358, 34wunsn 9538 . . . . . . . . . 10  |-  ( ph  ->  { (/) }  e.  U
)
368, 33, 35wunun 9532 . . . . . . . . 9  |-  ( ph  ->  ( `' dom  U. ran  (comp `  X )  u.  { (/) } )  e.  U )
378, 31wunrn 9551 . . . . . . . . 9  |-  ( ph  ->  ran  U. ran  (comp `  X )  e.  U
)
388, 36, 37wunxp 9546 . . . . . . . 8  |-  ( ph  ->  ( ( `' dom  U.
ran  (comp `  X )  u.  { (/) } )  X. 
ran  U. ran  (comp `  X ) )  e.  U )
398, 38wunpw 9529 . . . . . . 7  |-  ( ph  ->  ~P ( ( `' dom  U. ran  (comp `  X )  u.  { (/)
} )  X.  ran  U.
ran  (comp `  X )
)  e.  U )
40 tposssxp 7356 . . . . . . . . . . . 12  |- tpos  ( <.
y ,  ( 2nd `  x ) >. (comp `  X ) ( 1st `  x ) )  C_  ( ( `' dom  ( <. y ,  ( 2nd `  x )
>. (comp `  X )
( 1st `  x
) )  u.  { (/)
} )  X.  ran  ( <. y ,  ( 2nd `  x )
>. (comp `  X )
( 1st `  x
) ) )
41 ovssunirn 6681 . . . . . . . . . . . . . . 15  |-  ( <.
y ,  ( 2nd `  x ) >. (comp `  X ) ( 1st `  x ) )  C_  U.
ran  (comp `  X )
42 dmss 5323 . . . . . . . . . . . . . . 15  |-  ( (
<. y ,  ( 2nd `  x ) >. (comp `  X ) ( 1st `  x ) )  C_  U.
ran  (comp `  X )  ->  dom  ( <. y ,  ( 2nd `  x
) >. (comp `  X
) ( 1st `  x
) )  C_  dom  U.
ran  (comp `  X )
)
4341, 42ax-mp 5 . . . . . . . . . . . . . 14  |-  dom  ( <. y ,  ( 2nd `  x ) >. (comp `  X ) ( 1st `  x ) )  C_  dom  U. ran  (comp `  X )
44 cnvss 5294 . . . . . . . . . . . . . 14  |-  ( dom  ( <. y ,  ( 2nd `  x )
>. (comp `  X )
( 1st `  x
) )  C_  dom  U.
ran  (comp `  X )  ->  `' dom  ( <. y ,  ( 2nd `  x
) >. (comp `  X
) ( 1st `  x
) )  C_  `' dom  U. ran  (comp `  X ) )
45 unss1 3782 . . . . . . . . . . . . . 14  |-  ( `' dom  ( <. y ,  ( 2nd `  x
) >. (comp `  X
) ( 1st `  x
) )  C_  `' dom  U. ran  (comp `  X )  ->  ( `' dom  ( <. y ,  ( 2nd `  x
) >. (comp `  X
) ( 1st `  x
) )  u.  { (/)
} )  C_  ( `' dom  U. ran  (comp `  X )  u.  { (/)
} ) )
4643, 44, 45mp2b 10 . . . . . . . . . . . . 13  |-  ( `' dom  ( <. y ,  ( 2nd `  x
) >. (comp `  X
) ( 1st `  x
) )  u.  { (/)
} )  C_  ( `' dom  U. ran  (comp `  X )  u.  { (/)
} )
47 rnss 5354 . . . . . . . . . . . . . 14  |-  ( (
<. y ,  ( 2nd `  x ) >. (comp `  X ) ( 1st `  x ) )  C_  U.
ran  (comp `  X )  ->  ran  ( <. y ,  ( 2nd `  x
) >. (comp `  X
) ( 1st `  x
) )  C_  ran  U.
ran  (comp `  X )
)
4841, 47ax-mp 5 . . . . . . . . . . . . 13  |-  ran  ( <. y ,  ( 2nd `  x ) >. (comp `  X ) ( 1st `  x ) )  C_  ran  U. ran  (comp `  X )
49 xpss12 5225 . . . . . . . . . . . . 13  |-  ( ( ( `' dom  ( <. y ,  ( 2nd `  x ) >. (comp `  X ) ( 1st `  x ) )  u. 
{ (/) } )  C_  ( `' dom  U. ran  (comp `  X )  u.  { (/)
} )  /\  ran  ( <. y ,  ( 2nd `  x )
>. (comp `  X )
( 1st `  x
) )  C_  ran  U.
ran  (comp `  X )
)  ->  ( ( `' dom  ( <. y ,  ( 2nd `  x
) >. (comp `  X
) ( 1st `  x
) )  u.  { (/)
} )  X.  ran  ( <. y ,  ( 2nd `  x )
>. (comp `  X )
( 1st `  x
) ) )  C_  ( ( `' dom  U.
ran  (comp `  X )  u.  { (/) } )  X. 
ran  U. ran  (comp `  X ) ) )
5046, 48, 49mp2an 708 . . . . . . . . . . . 12  |-  ( ( `' dom  ( <. y ,  ( 2nd `  x
) >. (comp `  X
) ( 1st `  x
) )  u.  { (/)
} )  X.  ran  ( <. y ,  ( 2nd `  x )
>. (comp `  X )
( 1st `  x
) ) )  C_  ( ( `' dom  U.
ran  (comp `  X )  u.  { (/) } )  X. 
ran  U. ran  (comp `  X ) )
5140, 50sstri 3612 . . . . . . . . . . 11  |- tpos  ( <.
y ,  ( 2nd `  x ) >. (comp `  X ) ( 1st `  x ) )  C_  ( ( `' dom  U.
ran  (comp `  X )  u.  { (/) } )  X. 
ran  U. ran  (comp `  X ) )
52 elpw2g 4827 . . . . . . . . . . . 12  |-  ( ( ( `' dom  U. ran  (comp `  X )  u.  { (/) } )  X. 
ran  U. ran  (comp `  X ) )  e.  U  ->  (tpos  ( <. y ,  ( 2nd `  x ) >. (comp `  X ) ( 1st `  x ) )  e. 
~P ( ( `' dom  U. ran  (comp `  X )  u.  { (/)
} )  X.  ran  U.
ran  (comp `  X )
)  <-> tpos  ( <. y ,  ( 2nd `  x )
>. (comp `  X )
( 1st `  x
) )  C_  (
( `' dom  U. ran  (comp `  X )  u.  { (/) } )  X. 
ran  U. ran  (comp `  X ) ) ) )
5338, 52syl 17 . . . . . . . . . . 11  |-  ( ph  ->  (tpos  ( <. y ,  ( 2nd `  x
) >. (comp `  X
) ( 1st `  x
) )  e.  ~P ( ( `' dom  U.
ran  (comp `  X )  u.  { (/) } )  X. 
ran  U. ran  (comp `  X ) )  <-> tpos  ( <. y ,  ( 2nd `  x
) >. (comp `  X
) ( 1st `  x
) )  C_  (
( `' dom  U. ran  (comp `  X )  u.  { (/) } )  X. 
ran  U. ran  (comp `  X ) ) ) )
5451, 53mpbiri 248 . . . . . . . . . 10  |-  ( ph  -> tpos  ( <. y ,  ( 2nd `  x )
>. (comp `  X )
( 1st `  x
) )  e.  ~P ( ( `' dom  U.
ran  (comp `  X )  u.  { (/) } )  X. 
ran  U. ran  (comp `  X ) ) )
5554ralrimivw 2967 . . . . . . . . 9  |-  ( ph  ->  A. y  e.  (
Base `  X )tpos  ( <. y ,  ( 2nd `  x )
>. (comp `  X )
( 1st `  x
) )  e.  ~P ( ( `' dom  U.
ran  (comp `  X )  u.  { (/) } )  X. 
ran  U. ran  (comp `  X ) ) )
5655ralrimivw 2967 . . . . . . . 8  |-  ( ph  ->  A. x  e.  ( ( Base `  X
)  X.  ( Base `  X ) ) A. y  e.  ( Base `  X )tpos  ( <.
y ,  ( 2nd `  x ) >. (comp `  X ) ( 1st `  x ) )  e. 
~P ( ( `' dom  U. ran  (comp `  X )  u.  { (/)
} )  X.  ran  U.
ran  (comp `  X )
) )
57 eqid 2622 . . . . . . . . 9  |-  ( x  e.  ( ( Base `  X )  X.  ( Base `  X ) ) ,  y  e.  (
Base `  X )  |-> tpos  ( <. y ,  ( 2nd `  x )
>. (comp `  X )
( 1st `  x
) ) )  =  ( x  e.  ( ( Base `  X
)  X.  ( Base `  X ) ) ,  y  e.  ( Base `  X )  |-> tpos  ( <.
y ,  ( 2nd `  x ) >. (comp `  X ) ( 1st `  x ) ) )
5857fmpt2 7237 . . . . . . . 8  |-  ( A. x  e.  ( ( Base `  X )  X.  ( Base `  X
) ) A. y  e.  ( Base `  X
)tpos  ( <. y ,  ( 2nd `  x
) >. (comp `  X
) ( 1st `  x
) )  e.  ~P ( ( `' dom  U.
ran  (comp `  X )  u.  { (/) } )  X. 
ran  U. ran  (comp `  X ) )  <->  ( x  e.  ( ( Base `  X
)  X.  ( Base `  X ) ) ,  y  e.  ( Base `  X )  |-> tpos  ( <.
y ,  ( 2nd `  x ) >. (comp `  X ) ( 1st `  x ) ) ) : ( ( (
Base `  X )  X.  ( Base `  X
) )  X.  ( Base `  X ) ) --> ~P ( ( `' dom  U. ran  (comp `  X )  u.  { (/)
} )  X.  ran  U.
ran  (comp `  X )
) )
5956, 58sylib 208 . . . . . . 7  |-  ( ph  ->  ( x  e.  ( ( Base `  X
)  X.  ( Base `  X ) ) ,  y  e.  ( Base `  X )  |-> tpos  ( <.
y ,  ( 2nd `  x ) >. (comp `  X ) ( 1st `  x ) ) ) : ( ( (
Base `  X )  X.  ( Base `  X
) )  X.  ( Base `  X ) ) --> ~P ( ( `' dom  U. ran  (comp `  X )  u.  { (/)
} )  X.  ran  U.
ran  (comp `  X )
) )
608, 28, 39, 59wunf 9549 . . . . . 6  |-  ( ph  ->  ( x  e.  ( ( Base `  X
)  X.  ( Base `  X ) ) ,  y  e.  ( Base `  X )  |-> tpos  ( <.
y ,  ( 2nd `  x ) >. (comp `  X ) ( 1st `  x ) ) )  e.  U )
618, 24, 60wunop 9544 . . . . 5  |-  ( ph  -> 
<. (comp `  ndx ) ,  ( x  e.  ( ( Base `  X
)  X.  ( Base `  X ) ) ,  y  e.  ( Base `  X )  |-> tpos  ( <.
y ,  ( 2nd `  x ) >. (comp `  X ) ( 1st `  x ) ) )
>.  e.  U )
628, 22, 61wunsets 15900 . . . 4  |-  ( ph  ->  ( ( X sSet  <. ( Hom  `  ndx ) , tpos  ( Hom  `  X
) >. ) sSet  <. (comp ` 
ndx ) ,  ( x  e.  ( (
Base `  X )  X.  ( Base `  X
) ) ,  y  e.  ( Base `  X
)  |-> tpos  ( <. y ,  ( 2nd `  x )
>. (comp `  X )
( 1st `  x
) ) ) >.
)  e.  U )
637, 62eqeltrd 2701 . . 3  |-  ( ph  ->  O  e.  U )
64 inss2 3834 . . . . 5  |-  ( U  i^i  Cat )  C_  Cat
6564, 13sseldi 3601 . . . 4  |-  ( ph  ->  X  e.  Cat )
665oppccat 16382 . . . 4  |-  ( X  e.  Cat  ->  O  e.  Cat )
6765, 66syl 17 . . 3  |-  ( ph  ->  O  e.  Cat )
6863, 67elind 3798 . 2  |-  ( ph  ->  O  e.  ( U  i^i  Cat ) )
6968, 12eleqtrrd 2704 1  |-  ( ph  ->  O  e.  B )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    = wceq 1483    e. wcel 1990   A.wral 2912    u. cun 3572    i^i cin 3573    C_ wss 3574   (/)c0 3915   ~Pcpw 4158   {csn 4177   <.cop 4183   U.cuni 4436    X. cxp 5112   `'ccnv 5113   dom cdm 5114   ran crn 5115   -->wf 5884   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652   omcom 7065   1stc1st 7166   2ndc2nd 7167  tpos ctpos 7351  WUnicwun 9522   1c1 9937   4c4 11072   5c5 11073  ;cdc 11493   ndxcnx 15854   sSet csts 15855   Basecbs 15857   Hom chom 15952  compcco 15953   Catccat 16325  oppCatcoppc 16371  CatCatccatc 16744
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-tpos 7352  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-omul 7565  df-er 7742  df-ec 7744  df-qs 7748  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-wun 9524  df-ni 9694  df-pli 9695  df-mi 9696  df-lti 9697  df-plpq 9730  df-mpq 9731  df-ltpq 9732  df-enq 9733  df-nq 9734  df-erq 9735  df-plq 9736  df-mq 9737  df-1nq 9738  df-rq 9739  df-ltnq 9740  df-np 9803  df-plp 9805  df-ltp 9807  df-enr 9877  df-nr 9878  df-c 9942  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-fz 12327  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-hom 15966  df-cco 15967  df-cat 16329  df-cid 16330  df-oppc 16372  df-catc 16745
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator