![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-np | Structured version Visualization version Unicode version |
Description: Define the set of positive reals. A "Dedekind cut" is a partition of the positive rational numbers into two classes such that all the numbers of one class are less than all the numbers of the other. A positive real is defined as the lower class of a Dedekind cut. Definition 9-3.1 of [Gleason] p. 121. (Note: This is a "temporary" definition used in the construction of complex numbers df-c 9942, and is intended to be used only by the construction.) (Contributed by NM, 31-Oct-1995.) (New usage is discouraged.) |
Ref | Expression |
---|---|
df-np |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnp 9681 |
. 2
![]() ![]() | |
2 | c0 3915 |
. . . . . 6
![]() ![]() | |
3 | vx |
. . . . . . 7
![]() ![]() | |
4 | 3 | cv 1482 |
. . . . . 6
![]() ![]() |
5 | 2, 4 | wpss 3575 |
. . . . 5
![]() ![]() ![]() ![]() |
6 | cnq 9674 |
. . . . . 6
![]() ![]() | |
7 | 4, 6 | wpss 3575 |
. . . . 5
![]() ![]() ![]() ![]() |
8 | 5, 7 | wa 384 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
9 | vz |
. . . . . . . . . 10
![]() ![]() | |
10 | 9 | cv 1482 |
. . . . . . . . 9
![]() ![]() |
11 | vy |
. . . . . . . . . 10
![]() ![]() | |
12 | 11 | cv 1482 |
. . . . . . . . 9
![]() ![]() |
13 | cltq 9680 |
. . . . . . . . 9
![]() ![]() | |
14 | 10, 12, 13 | wbr 4653 |
. . . . . . . 8
![]() ![]() ![]() ![]() |
15 | 9, 3 | wel 1991 |
. . . . . . . 8
![]() ![]() ![]() ![]() |
16 | 14, 15 | wi 4 |
. . . . . . 7
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
17 | 16, 9 | wal 1481 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
18 | 12, 10, 13 | wbr 4653 |
. . . . . . 7
![]() ![]() ![]() ![]() |
19 | 18, 9, 4 | wrex 2913 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
20 | 17, 19 | wa 384 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
21 | 20, 11, 4 | wral 2912 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
22 | 8, 21 | wa 384 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
23 | 22, 3 | cab 2608 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
24 | 1, 23 | wceq 1483 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
This definition is referenced by: npex 9808 elnp 9809 elnpi 9810 |
Copyright terms: Public domain | W3C validator |