| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elnpi | Structured version Visualization version Unicode version | ||
| Description: Membership in positive reals. (Contributed by Mario Carneiro, 11-May-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| elnpi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 3212 |
. 2
| |
| 2 | simpl1 1064 |
. 2
| |
| 3 | psseq2 3695 |
. . . . . 6
| |
| 4 | psseq1 3694 |
. . . . . 6
| |
| 5 | 3, 4 | anbi12d 747 |
. . . . 5
|
| 6 | eleq2 2690 |
. . . . . . . . 9
| |
| 7 | 6 | imbi2d 330 |
. . . . . . . 8
|
| 8 | 7 | albidv 1849 |
. . . . . . 7
|
| 9 | rexeq 3139 |
. . . . . . 7
| |
| 10 | 8, 9 | anbi12d 747 |
. . . . . 6
|
| 11 | 10 | raleqbi1dv 3146 |
. . . . 5
|
| 12 | 5, 11 | anbi12d 747 |
. . . 4
|
| 13 | df-np 9803 |
. . . 4
| |
| 14 | 12, 13 | elab2g 3353 |
. . 3
|
| 15 | id 22 |
. . . . . 6
| |
| 16 | 15 | 3expib 1268 |
. . . . 5
|
| 17 | 3simpc 1060 |
. . . . 5
| |
| 18 | 16, 17 | impbid1 215 |
. . . 4
|
| 19 | 18 | anbi1d 741 |
. . 3
|
| 20 | 14, 19 | bitrd 268 |
. 2
|
| 21 | 1, 2, 20 | pm5.21nii 368 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-v 3202 df-in 3581 df-ss 3588 df-pss 3590 df-np 9803 |
| This theorem is referenced by: prn0 9811 prpssnq 9812 prcdnq 9815 prnmax 9817 |
| Copyright terms: Public domain | W3C validator |