MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  archnq Structured version   Visualization version   Unicode version

Theorem archnq 9802
Description: For any fraction, there is an integer that is greater than it. This is also known as the "archimedean property". (Contributed by Mario Carneiro, 10-May-2013.) (New usage is discouraged.)
Assertion
Ref Expression
archnq  |-  ( A  e.  Q.  ->  E. x  e.  N.  A  <Q  <. x ,  1o >. )
Distinct variable group:    x, A

Proof of Theorem archnq
StepHypRef Expression
1 elpqn 9747 . . . 4  |-  ( A  e.  Q.  ->  A  e.  ( N.  X.  N. ) )
2 xp1st 7198 . . . 4  |-  ( A  e.  ( N.  X.  N. )  ->  ( 1st `  A )  e.  N. )
31, 2syl 17 . . 3  |-  ( A  e.  Q.  ->  ( 1st `  A )  e. 
N. )
4 1pi 9705 . . 3  |-  1o  e.  N.
5 addclpi 9714 . . 3  |-  ( ( ( 1st `  A
)  e.  N.  /\  1o  e.  N. )  -> 
( ( 1st `  A
)  +N  1o )  e.  N. )
63, 4, 5sylancl 694 . 2  |-  ( A  e.  Q.  ->  (
( 1st `  A
)  +N  1o )  e.  N. )
7 xp2nd 7199 . . . . . 6  |-  ( A  e.  ( N.  X.  N. )  ->  ( 2nd `  A )  e.  N. )
81, 7syl 17 . . . . 5  |-  ( A  e.  Q.  ->  ( 2nd `  A )  e. 
N. )
9 mulclpi 9715 . . . . 5  |-  ( ( ( ( 1st `  A
)  +N  1o )  e.  N.  /\  ( 2nd `  A )  e. 
N. )  ->  (
( ( 1st `  A
)  +N  1o )  .N  ( 2nd `  A
) )  e.  N. )
106, 8, 9syl2anc 693 . . . 4  |-  ( A  e.  Q.  ->  (
( ( 1st `  A
)  +N  1o )  .N  ( 2nd `  A
) )  e.  N. )
11 eqid 2622 . . . . . . 7  |-  ( ( 1st `  A )  +N  1o )  =  ( ( 1st `  A
)  +N  1o )
12 oveq2 6658 . . . . . . . . 9  |-  ( x  =  1o  ->  (
( 1st `  A
)  +N  x )  =  ( ( 1st `  A )  +N  1o ) )
1312eqeq1d 2624 . . . . . . . 8  |-  ( x  =  1o  ->  (
( ( 1st `  A
)  +N  x )  =  ( ( 1st `  A )  +N  1o ) 
<->  ( ( 1st `  A
)  +N  1o )  =  ( ( 1st `  A )  +N  1o ) ) )
1413rspcev 3309 . . . . . . 7  |-  ( ( 1o  e.  N.  /\  ( ( 1st `  A
)  +N  1o )  =  ( ( 1st `  A )  +N  1o ) )  ->  E. x  e.  N.  ( ( 1st `  A )  +N  x
)  =  ( ( 1st `  A )  +N  1o ) )
154, 11, 14mp2an 708 . . . . . 6  |-  E. x  e.  N.  ( ( 1st `  A )  +N  x
)  =  ( ( 1st `  A )  +N  1o )
16 ltexpi 9724 . . . . . 6  |-  ( ( ( 1st `  A
)  e.  N.  /\  ( ( 1st `  A
)  +N  1o )  e.  N. )  -> 
( ( 1st `  A
)  <N  ( ( 1st `  A )  +N  1o ) 
<->  E. x  e.  N.  ( ( 1st `  A
)  +N  x )  =  ( ( 1st `  A )  +N  1o ) ) )
1715, 16mpbiri 248 . . . . 5  |-  ( ( ( 1st `  A
)  e.  N.  /\  ( ( 1st `  A
)  +N  1o )  e.  N. )  -> 
( 1st `  A
)  <N  ( ( 1st `  A )  +N  1o ) )
183, 6, 17syl2anc 693 . . . 4  |-  ( A  e.  Q.  ->  ( 1st `  A )  <N 
( ( 1st `  A
)  +N  1o ) )
19 nlt1pi 9728 . . . . 5  |-  -.  ( 2nd `  A )  <N  1o
20 ltmpi 9726 . . . . . . 7  |-  ( ( ( 1st `  A
)  +N  1o )  e.  N.  ->  (
( 2nd `  A
)  <N  1o  <->  ( (
( 1st `  A
)  +N  1o )  .N  ( 2nd `  A
) )  <N  (
( ( 1st `  A
)  +N  1o )  .N  1o ) ) )
216, 20syl 17 . . . . . 6  |-  ( A  e.  Q.  ->  (
( 2nd `  A
)  <N  1o  <->  ( (
( 1st `  A
)  +N  1o )  .N  ( 2nd `  A
) )  <N  (
( ( 1st `  A
)  +N  1o )  .N  1o ) ) )
22 mulidpi 9708 . . . . . . . 8  |-  ( ( ( 1st `  A
)  +N  1o )  e.  N.  ->  (
( ( 1st `  A
)  +N  1o )  .N  1o )  =  ( ( 1st `  A
)  +N  1o ) )
236, 22syl 17 . . . . . . 7  |-  ( A  e.  Q.  ->  (
( ( 1st `  A
)  +N  1o )  .N  1o )  =  ( ( 1st `  A
)  +N  1o ) )
2423breq2d 4665 . . . . . 6  |-  ( A  e.  Q.  ->  (
( ( ( 1st `  A )  +N  1o )  .N  ( 2nd `  A
) )  <N  (
( ( 1st `  A
)  +N  1o )  .N  1o )  <->  ( (
( 1st `  A
)  +N  1o )  .N  ( 2nd `  A
) )  <N  (
( 1st `  A
)  +N  1o ) ) )
2521, 24bitrd 268 . . . . 5  |-  ( A  e.  Q.  ->  (
( 2nd `  A
)  <N  1o  <->  ( (
( 1st `  A
)  +N  1o )  .N  ( 2nd `  A
) )  <N  (
( 1st `  A
)  +N  1o ) ) )
2619, 25mtbii 316 . . . 4  |-  ( A  e.  Q.  ->  -.  ( ( ( 1st `  A )  +N  1o )  .N  ( 2nd `  A
) )  <N  (
( 1st `  A
)  +N  1o ) )
27 ltsopi 9710 . . . . 5  |-  <N  Or  N.
28 ltrelpi 9711 . . . . 5  |-  <N  C_  ( N.  X.  N. )
2927, 28sotri3 5526 . . . 4  |-  ( ( ( ( ( 1st `  A )  +N  1o )  .N  ( 2nd `  A
) )  e.  N.  /\  ( 1st `  A
)  <N  ( ( 1st `  A )  +N  1o )  /\  -.  ( ( ( 1st `  A
)  +N  1o )  .N  ( 2nd `  A
) )  <N  (
( 1st `  A
)  +N  1o ) )  ->  ( 1st `  A )  <N  (
( ( 1st `  A
)  +N  1o )  .N  ( 2nd `  A
) ) )
3010, 18, 26, 29syl3anc 1326 . . 3  |-  ( A  e.  Q.  ->  ( 1st `  A )  <N 
( ( ( 1st `  A )  +N  1o )  .N  ( 2nd `  A
) ) )
31 pinq 9749 . . . . . 6  |-  ( ( ( 1st `  A
)  +N  1o )  e.  N.  ->  <. (
( 1st `  A
)  +N  1o ) ,  1o >.  e.  Q. )
326, 31syl 17 . . . . 5  |-  ( A  e.  Q.  ->  <. (
( 1st `  A
)  +N  1o ) ,  1o >.  e.  Q. )
33 ordpinq 9765 . . . . 5  |-  ( ( A  e.  Q.  /\  <.
( ( 1st `  A
)  +N  1o ) ,  1o >.  e.  Q. )  ->  ( A  <Q  <.
( ( 1st `  A
)  +N  1o ) ,  1o >.  <->  ( ( 1st `  A )  .N  ( 2nd `  <. ( ( 1st `  A
)  +N  1o ) ,  1o >. )
)  <N  ( ( 1st `  <. ( ( 1st `  A )  +N  1o ) ,  1o >. )  .N  ( 2nd `  A
) ) ) )
3432, 33mpdan 702 . . . 4  |-  ( A  e.  Q.  ->  ( A  <Q  <. ( ( 1st `  A )  +N  1o ) ,  1o >.  <->  ( ( 1st `  A )  .N  ( 2nd `  <. ( ( 1st `  A
)  +N  1o ) ,  1o >. )
)  <N  ( ( 1st `  <. ( ( 1st `  A )  +N  1o ) ,  1o >. )  .N  ( 2nd `  A
) ) ) )
35 ovex 6678 . . . . . . . 8  |-  ( ( 1st `  A )  +N  1o )  e. 
_V
364elexi 3213 . . . . . . . 8  |-  1o  e.  _V
3735, 36op2nd 7177 . . . . . . 7  |-  ( 2nd `  <. ( ( 1st `  A )  +N  1o ) ,  1o >. )  =  1o
3837oveq2i 6661 . . . . . 6  |-  ( ( 1st `  A )  .N  ( 2nd `  <. ( ( 1st `  A
)  +N  1o ) ,  1o >. )
)  =  ( ( 1st `  A )  .N  1o )
39 mulidpi 9708 . . . . . . 7  |-  ( ( 1st `  A )  e.  N.  ->  (
( 1st `  A
)  .N  1o )  =  ( 1st `  A
) )
403, 39syl 17 . . . . . 6  |-  ( A  e.  Q.  ->  (
( 1st `  A
)  .N  1o )  =  ( 1st `  A
) )
4138, 40syl5eq 2668 . . . . 5  |-  ( A  e.  Q.  ->  (
( 1st `  A
)  .N  ( 2nd `  <. ( ( 1st `  A )  +N  1o ) ,  1o >. )
)  =  ( 1st `  A ) )
4235, 36op1st 7176 . . . . . . 7  |-  ( 1st `  <. ( ( 1st `  A )  +N  1o ) ,  1o >. )  =  ( ( 1st `  A )  +N  1o )
4342oveq1i 6660 . . . . . 6  |-  ( ( 1st `  <. (
( 1st `  A
)  +N  1o ) ,  1o >. )  .N  ( 2nd `  A
) )  =  ( ( ( 1st `  A
)  +N  1o )  .N  ( 2nd `  A
) )
4443a1i 11 . . . . 5  |-  ( A  e.  Q.  ->  (
( 1st `  <. ( ( 1st `  A
)  +N  1o ) ,  1o >. )  .N  ( 2nd `  A
) )  =  ( ( ( 1st `  A
)  +N  1o )  .N  ( 2nd `  A
) ) )
4541, 44breq12d 4666 . . . 4  |-  ( A  e.  Q.  ->  (
( ( 1st `  A
)  .N  ( 2nd `  <. ( ( 1st `  A )  +N  1o ) ,  1o >. )
)  <N  ( ( 1st `  <. ( ( 1st `  A )  +N  1o ) ,  1o >. )  .N  ( 2nd `  A
) )  <->  ( 1st `  A )  <N  (
( ( 1st `  A
)  +N  1o )  .N  ( 2nd `  A
) ) ) )
4634, 45bitrd 268 . . 3  |-  ( A  e.  Q.  ->  ( A  <Q  <. ( ( 1st `  A )  +N  1o ) ,  1o >.  <->  ( 1st `  A )  <N  (
( ( 1st `  A
)  +N  1o )  .N  ( 2nd `  A
) ) ) )
4730, 46mpbird 247 . 2  |-  ( A  e.  Q.  ->  A  <Q 
<. ( ( 1st `  A
)  +N  1o ) ,  1o >. )
48 opeq1 4402 . . . 4  |-  ( x  =  ( ( 1st `  A )  +N  1o )  ->  <. x ,  1o >.  =  <. ( ( 1st `  A )  +N  1o ) ,  1o >. )
4948breq2d 4665 . . 3  |-  ( x  =  ( ( 1st `  A )  +N  1o )  ->  ( A  <Q  <.
x ,  1o >.  <->  A  <Q 
<. ( ( 1st `  A
)  +N  1o ) ,  1o >. )
)
5049rspcev 3309 . 2  |-  ( ( ( ( 1st `  A
)  +N  1o )  e.  N.  /\  A  <Q 
<. ( ( 1st `  A
)  +N  1o ) ,  1o >. )  ->  E. x  e.  N.  A  <Q  <. x ,  1o >. )
516, 47, 50syl2anc 693 1  |-  ( A  e.  Q.  ->  E. x  e.  N.  A  <Q  <. x ,  1o >. )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   E.wrex 2913   <.cop 4183   class class class wbr 4653    X. cxp 5112   ` cfv 5888  (class class class)co 6650   1stc1st 7166   2ndc2nd 7167   1oc1o 7553   N.cnpi 9666    +N cpli 9667    .N cmi 9668    <N clti 9669   Q.cnq 9674    <Q cltq 9680
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-omul 7565  df-ni 9694  df-pli 9695  df-mi 9696  df-lti 9697  df-ltpq 9732  df-nq 9734  df-ltnq 9740
This theorem is referenced by:  prlem934  9855
  Copyright terms: Public domain W3C validator