MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elnp Structured version   Visualization version   Unicode version

Theorem elnp 9809
Description: Membership in positive reals. (Contributed by NM, 16-Feb-1996.) (New usage is discouraged.)
Assertion
Ref Expression
elnp  |-  ( A  e.  P.  <->  ( ( (/)  C.  A  /\  A  C.  Q. )  /\  A. x  e.  A  ( A. y ( y  <Q  x  ->  y  e.  A
)  /\  E. y  e.  A  x  <Q  y ) ) )
Distinct variable group:    x, y, A

Proof of Theorem elnp
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 elex 3212 . 2  |-  ( A  e.  P.  ->  A  e.  _V )
2 pssss 3702 . . . 4  |-  ( A 
C.  Q.  ->  A  C_  Q. )
3 nqex 9745 . . . . 5  |-  Q.  e.  _V
43ssex 4802 . . . 4  |-  ( A 
C_  Q.  ->  A  e. 
_V )
52, 4syl 17 . . 3  |-  ( A 
C.  Q.  ->  A  e. 
_V )
65ad2antlr 763 . 2  |-  ( ( ( (/)  C.  A  /\  A  C.  Q. )  /\  A. x  e.  A  ( A. y ( y 
<Q  x  ->  y  e.  A )  /\  E. y  e.  A  x  <Q  y ) )  ->  A  e.  _V )
7 psseq2 3695 . . . . 5  |-  ( z  =  A  ->  ( (/)  C.  z  <->  (/)  C.  A )
)
8 psseq1 3694 . . . . 5  |-  ( z  =  A  ->  (
z  C.  Q.  <->  A  C.  Q. )
)
97, 8anbi12d 747 . . . 4  |-  ( z  =  A  ->  (
( (/)  C.  z  /\  z  C.  Q. )  <->  ( (/)  C.  A  /\  A  C.  Q. )
) )
10 eleq2 2690 . . . . . . . 8  |-  ( z  =  A  ->  (
y  e.  z  <->  y  e.  A ) )
1110imbi2d 330 . . . . . . 7  |-  ( z  =  A  ->  (
( y  <Q  x  ->  y  e.  z )  <-> 
( y  <Q  x  ->  y  e.  A ) ) )
1211albidv 1849 . . . . . 6  |-  ( z  =  A  ->  ( A. y ( y  <Q  x  ->  y  e.  z )  <->  A. y ( y 
<Q  x  ->  y  e.  A ) ) )
13 rexeq 3139 . . . . . 6  |-  ( z  =  A  ->  ( E. y  e.  z  x  <Q  y  <->  E. y  e.  A  x  <Q  y ) )
1412, 13anbi12d 747 . . . . 5  |-  ( z  =  A  ->  (
( A. y ( y  <Q  x  ->  y  e.  z )  /\  E. y  e.  z  x 
<Q  y )  <->  ( A. y ( y  <Q  x  ->  y  e.  A
)  /\  E. y  e.  A  x  <Q  y ) ) )
1514raleqbi1dv 3146 . . . 4  |-  ( z  =  A  ->  ( A. x  e.  z 
( A. y ( y  <Q  x  ->  y  e.  z )  /\  E. y  e.  z  x 
<Q  y )  <->  A. x  e.  A  ( A. y ( y  <Q  x  ->  y  e.  A
)  /\  E. y  e.  A  x  <Q  y ) ) )
169, 15anbi12d 747 . . 3  |-  ( z  =  A  ->  (
( ( (/)  C.  z  /\  z  C.  Q. )  /\  A. x  e.  z  ( A. y ( y  <Q  x  ->  y  e.  z )  /\  E. y  e.  z  x 
<Q  y ) )  <->  ( ( (/)  C.  A  /\  A  C.  Q. )  /\  A. x  e.  A  ( A. y ( y  <Q  x  ->  y  e.  A
)  /\  E. y  e.  A  x  <Q  y ) ) ) )
17 df-np 9803 . . 3  |-  P.  =  { z  |  ( ( (/)  C.  z  /\  z  C.  Q. )  /\  A. x  e.  z  ( A. y ( y 
<Q  x  ->  y  e.  z )  /\  E. y  e.  z  x  <Q  y ) ) }
1816, 17elab2g 3353 . 2  |-  ( A  e.  _V  ->  ( A  e.  P.  <->  ( ( (/)  C.  A  /\  A  C.  Q. )  /\  A. x  e.  A  ( A. y ( y  <Q  x  ->  y  e.  A
)  /\  E. y  e.  A  x  <Q  y ) ) ) )
191, 6, 18pm5.21nii 368 1  |-  ( A  e.  P.  <->  ( ( (/)  C.  A  /\  A  C.  Q. )  /\  A. x  e.  A  ( A. y ( y  <Q  x  ->  y  e.  A
)  /\  E. y  e.  A  x  <Q  y ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384   A.wal 1481    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913   _Vcvv 3200    C_ wss 3574    C. wpss 3575   (/)c0 3915   class class class wbr 4653   Q.cnq 9674    <Q cltq 9680   P.cnp 9681
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-tr 4753  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-om 7066  df-ni 9694  df-nq 9734  df-np 9803
This theorem is referenced by:  genpcl  9830  nqpr  9836  ltexprlem5  9862  reclem2pr  9870  suplem1pr  9874
  Copyright terms: Public domain W3C validator