![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-refld | Structured version Visualization version Unicode version |
Description: The field of real numbers. (Contributed by Thierry Arnoux, 30-Jun-2019.) |
Ref | Expression |
---|---|
df-refld |
![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | crefld 19950 |
. 2
![]() | |
2 | ccnfld 19746 |
. . 3
![]() | |
3 | cr 9935 |
. . 3
![]() ![]() | |
4 | cress 15858 |
. . 3
![]() | |
5 | 2, 3, 4 | co 6650 |
. 2
![]() ![]() ![]() ![]() |
6 | 1, 5 | wceq 1483 |
1
![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
This definition is referenced by: rebase 19952 remulg 19953 resubdrg 19954 resubgval 19955 replusg 19956 remulr 19957 re0g 19958 re1r 19959 rele2 19960 relt 19961 reds 19962 redvr 19963 retos 19964 refld 19965 refldcj 19966 regsumsupp 19968 tgioo3 22608 recvs 22946 retopn 23167 recms 23168 reust 23169 rrxcph 23180 reefgim 24204 rzgrp 24300 amgmlem 24716 nn0omnd 29841 nn0archi 29843 xrge0slmod 29844 rezh 30015 rrhcn 30041 rerrext 30053 cnrrext 30054 qqtopn 30055 rrxdsfi 40505 amgmwlem 42548 |
Copyright terms: Public domain | W3C validator |