Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xrge0slmod Structured version   Visualization version   Unicode version

Theorem xrge0slmod 29844
Description: The extended nonnegative real numbers form a semiring left module. One could also have used subringAlg to get the same structure. (Contributed by Thierry Arnoux, 6-Sep-2018.)
Hypotheses
Ref Expression
xrge0slmod.1  |-  G  =  ( RR*ss  ( 0 [,] +oo ) )
xrge0slmod.2  |-  W  =  ( Gv  ( 0 [,) +oo ) )
Assertion
Ref Expression
xrge0slmod  |-  W  e. SLMod

Proof of Theorem xrge0slmod
Dummy variables  r 
q  w  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xrge0slmod.1 . . . 4  |-  G  =  ( RR*ss  ( 0 [,] +oo ) )
2 xrge0cmn 19788 . . . 4  |-  ( RR*ss  ( 0 [,] +oo ) )  e. CMnd
31, 2eqeltri 2697 . . 3  |-  G  e. CMnd
4 ovex 6678 . . . 4  |-  ( 0 [,) +oo )  e. 
_V
5 xrge0slmod.2 . . . . 5  |-  W  =  ( Gv  ( 0 [,) +oo ) )
65resvcmn 29838 . . . 4  |-  ( ( 0 [,) +oo )  e.  _V  ->  ( G  e. CMnd  <-> 
W  e. CMnd ) )
74, 6ax-mp 5 . . 3  |-  ( G  e. CMnd 
<->  W  e. CMnd )
83, 7mpbi 220 . 2  |-  W  e. CMnd
9 rge0srg 19817 . 2  |-  (flds  ( 0 [,) +oo ) )  e. SRing
10 icossicc 12260 . . . . . . . 8  |-  ( 0 [,) +oo )  C_  ( 0 [,] +oo )
11 simplr 792 . . . . . . . 8  |-  ( ( ( q  e.  ( 0 [,) +oo )  /\  r  e.  (
0 [,) +oo )
)  /\  ( x  e.  ( 0 [,] +oo )  /\  w  e.  ( 0 [,] +oo )
) )  ->  r  e.  ( 0 [,) +oo ) )
1210, 11sseldi 3601 . . . . . . 7  |-  ( ( ( q  e.  ( 0 [,) +oo )  /\  r  e.  (
0 [,) +oo )
)  /\  ( x  e.  ( 0 [,] +oo )  /\  w  e.  ( 0 [,] +oo )
) )  ->  r  e.  ( 0 [,] +oo ) )
13 simprr 796 . . . . . . 7  |-  ( ( ( q  e.  ( 0 [,) +oo )  /\  r  e.  (
0 [,) +oo )
)  /\  ( x  e.  ( 0 [,] +oo )  /\  w  e.  ( 0 [,] +oo )
) )  ->  w  e.  ( 0 [,] +oo ) )
14 ge0xmulcl 12287 . . . . . . 7  |-  ( ( r  e.  ( 0 [,] +oo )  /\  w  e.  ( 0 [,] +oo ) )  ->  ( r xe w )  e.  ( 0 [,] +oo ) )
1512, 13, 14syl2anc 693 . . . . . 6  |-  ( ( ( q  e.  ( 0 [,) +oo )  /\  r  e.  (
0 [,) +oo )
)  /\  ( x  e.  ( 0 [,] +oo )  /\  w  e.  ( 0 [,] +oo )
) )  ->  (
r xe w )  e.  ( 0 [,] +oo ) )
16 simprl 794 . . . . . . 7  |-  ( ( ( q  e.  ( 0 [,) +oo )  /\  r  e.  (
0 [,) +oo )
)  /\  ( x  e.  ( 0 [,] +oo )  /\  w  e.  ( 0 [,] +oo )
) )  ->  x  e.  ( 0 [,] +oo ) )
17 xrge0adddi 29693 . . . . . . 7  |-  ( ( w  e.  ( 0 [,] +oo )  /\  x  e.  ( 0 [,] +oo )  /\  r  e.  ( 0 [,] +oo ) )  ->  ( r xe ( w +e x ) )  =  ( ( r xe w ) +e ( r xe x ) ) )
1813, 16, 12, 17syl3anc 1326 . . . . . 6  |-  ( ( ( q  e.  ( 0 [,) +oo )  /\  r  e.  (
0 [,) +oo )
)  /\  ( x  e.  ( 0 [,] +oo )  /\  w  e.  ( 0 [,] +oo )
) )  ->  (
r xe ( w +e x ) )  =  ( ( r xe w ) +e
( r xe x ) ) )
19 rge0ssre 12280 . . . . . . . . . 10  |-  ( 0 [,) +oo )  C_  RR
20 simpll 790 . . . . . . . . . 10  |-  ( ( ( q  e.  ( 0 [,) +oo )  /\  r  e.  (
0 [,) +oo )
)  /\  ( x  e.  ( 0 [,] +oo )  /\  w  e.  ( 0 [,] +oo )
) )  ->  q  e.  ( 0 [,) +oo ) )
2119, 20sseldi 3601 . . . . . . . . 9  |-  ( ( ( q  e.  ( 0 [,) +oo )  /\  r  e.  (
0 [,) +oo )
)  /\  ( x  e.  ( 0 [,] +oo )  /\  w  e.  ( 0 [,] +oo )
) )  ->  q  e.  RR )
2219, 11sseldi 3601 . . . . . . . . 9  |-  ( ( ( q  e.  ( 0 [,) +oo )  /\  r  e.  (
0 [,) +oo )
)  /\  ( x  e.  ( 0 [,] +oo )  /\  w  e.  ( 0 [,] +oo )
) )  ->  r  e.  RR )
23 rexadd 12063 . . . . . . . . 9  |-  ( ( q  e.  RR  /\  r  e.  RR )  ->  ( q +e
r )  =  ( q  +  r ) )
2421, 22, 23syl2anc 693 . . . . . . . 8  |-  ( ( ( q  e.  ( 0 [,) +oo )  /\  r  e.  (
0 [,) +oo )
)  /\  ( x  e.  ( 0 [,] +oo )  /\  w  e.  ( 0 [,] +oo )
) )  ->  (
q +e r )  =  ( q  +  r ) )
2524oveq1d 6665 . . . . . . 7  |-  ( ( ( q  e.  ( 0 [,) +oo )  /\  r  e.  (
0 [,) +oo )
)  /\  ( x  e.  ( 0 [,] +oo )  /\  w  e.  ( 0 [,] +oo )
) )  ->  (
( q +e
r ) xe w )  =  ( ( q  +  r ) xe w ) )
2610, 20sseldi 3601 . . . . . . . 8  |-  ( ( ( q  e.  ( 0 [,) +oo )  /\  r  e.  (
0 [,) +oo )
)  /\  ( x  e.  ( 0 [,] +oo )  /\  w  e.  ( 0 [,] +oo )
) )  ->  q  e.  ( 0 [,] +oo ) )
27 xrge0adddir 29692 . . . . . . . 8  |-  ( ( q  e.  ( 0 [,] +oo )  /\  r  e.  ( 0 [,] +oo )  /\  w  e.  ( 0 [,] +oo ) )  ->  ( ( q +e r ) xe w )  =  ( ( q xe w ) +e ( r xe w ) ) )
2826, 12, 13, 27syl3anc 1326 . . . . . . 7  |-  ( ( ( q  e.  ( 0 [,) +oo )  /\  r  e.  (
0 [,) +oo )
)  /\  ( x  e.  ( 0 [,] +oo )  /\  w  e.  ( 0 [,] +oo )
) )  ->  (
( q +e
r ) xe w )  =  ( ( q xe w ) +e
( r xe w ) ) )
2925, 28eqtr3d 2658 . . . . . 6  |-  ( ( ( q  e.  ( 0 [,) +oo )  /\  r  e.  (
0 [,) +oo )
)  /\  ( x  e.  ( 0 [,] +oo )  /\  w  e.  ( 0 [,] +oo )
) )  ->  (
( q  +  r ) xe w )  =  ( ( q xe w ) +e ( r xe w ) ) )
3015, 18, 293jca 1242 . . . . 5  |-  ( ( ( q  e.  ( 0 [,) +oo )  /\  r  e.  (
0 [,) +oo )
)  /\  ( x  e.  ( 0 [,] +oo )  /\  w  e.  ( 0 [,] +oo )
) )  ->  (
( r xe w )  e.  ( 0 [,] +oo )  /\  ( r xe ( w +e
x ) )  =  ( ( r xe w ) +e ( r xe x ) )  /\  ( ( q  +  r ) xe w )  =  ( ( q xe w ) +e ( r xe w ) ) ) )
31 rexmul 12101 . . . . . . . . 9  |-  ( ( q  e.  RR  /\  r  e.  RR )  ->  ( q xe r )  =  ( q  x.  r ) )
3221, 22, 31syl2anc 693 . . . . . . . 8  |-  ( ( ( q  e.  ( 0 [,) +oo )  /\  r  e.  (
0 [,) +oo )
)  /\  ( x  e.  ( 0 [,] +oo )  /\  w  e.  ( 0 [,] +oo )
) )  ->  (
q xe r )  =  ( q  x.  r ) )
3332oveq1d 6665 . . . . . . 7  |-  ( ( ( q  e.  ( 0 [,) +oo )  /\  r  e.  (
0 [,) +oo )
)  /\  ( x  e.  ( 0 [,] +oo )  /\  w  e.  ( 0 [,] +oo )
) )  ->  (
( q xe r ) xe w )  =  ( ( q  x.  r
) xe w ) )
3421rexrd 10089 . . . . . . . 8  |-  ( ( ( q  e.  ( 0 [,) +oo )  /\  r  e.  (
0 [,) +oo )
)  /\  ( x  e.  ( 0 [,] +oo )  /\  w  e.  ( 0 [,] +oo )
) )  ->  q  e.  RR* )
3522rexrd 10089 . . . . . . . 8  |-  ( ( ( q  e.  ( 0 [,) +oo )  /\  r  e.  (
0 [,) +oo )
)  /\  ( x  e.  ( 0 [,] +oo )  /\  w  e.  ( 0 [,] +oo )
) )  ->  r  e.  RR* )
36 iccssxr 12256 . . . . . . . . 9  |-  ( 0 [,] +oo )  C_  RR*
3736, 13sseldi 3601 . . . . . . . 8  |-  ( ( ( q  e.  ( 0 [,) +oo )  /\  r  e.  (
0 [,) +oo )
)  /\  ( x  e.  ( 0 [,] +oo )  /\  w  e.  ( 0 [,] +oo )
) )  ->  w  e.  RR* )
38 xmulass 12117 . . . . . . . 8  |-  ( ( q  e.  RR*  /\  r  e.  RR*  /\  w  e. 
RR* )  ->  (
( q xe r ) xe w )  =  ( q xe ( r xe w ) ) )
3934, 35, 37, 38syl3anc 1326 . . . . . . 7  |-  ( ( ( q  e.  ( 0 [,) +oo )  /\  r  e.  (
0 [,) +oo )
)  /\  ( x  e.  ( 0 [,] +oo )  /\  w  e.  ( 0 [,] +oo )
) )  ->  (
( q xe r ) xe w )  =  ( q xe ( r xe w ) ) )
4033, 39eqtr3d 2658 . . . . . 6  |-  ( ( ( q  e.  ( 0 [,) +oo )  /\  r  e.  (
0 [,) +oo )
)  /\  ( x  e.  ( 0 [,] +oo )  /\  w  e.  ( 0 [,] +oo )
) )  ->  (
( q  x.  r
) xe w )  =  ( q xe ( r xe w ) ) )
41 xmulid2 12110 . . . . . . 7  |-  ( w  e.  RR*  ->  ( 1 xe w )  =  w )
4237, 41syl 17 . . . . . 6  |-  ( ( ( q  e.  ( 0 [,) +oo )  /\  r  e.  (
0 [,) +oo )
)  /\  ( x  e.  ( 0 [,] +oo )  /\  w  e.  ( 0 [,] +oo )
) )  ->  (
1 xe w )  =  w )
43 xmul02 12098 . . . . . . 7  |-  ( w  e.  RR*  ->  ( 0 xe w )  =  0 )
4437, 43syl 17 . . . . . 6  |-  ( ( ( q  e.  ( 0 [,) +oo )  /\  r  e.  (
0 [,) +oo )
)  /\  ( x  e.  ( 0 [,] +oo )  /\  w  e.  ( 0 [,] +oo )
) )  ->  (
0 xe w )  =  0 )
4540, 42, 443jca 1242 . . . . 5  |-  ( ( ( q  e.  ( 0 [,) +oo )  /\  r  e.  (
0 [,) +oo )
)  /\  ( x  e.  ( 0 [,] +oo )  /\  w  e.  ( 0 [,] +oo )
) )  ->  (
( ( q  x.  r ) xe w )  =  ( q xe ( r xe w ) )  /\  (
1 xe w )  =  w  /\  ( 0 xe w )  =  0 ) )
4630, 45jca 554 . . . 4  |-  ( ( ( q  e.  ( 0 [,) +oo )  /\  r  e.  (
0 [,) +oo )
)  /\  ( x  e.  ( 0 [,] +oo )  /\  w  e.  ( 0 [,] +oo )
) )  ->  (
( ( r xe w )  e.  ( 0 [,] +oo )  /\  ( r xe ( w +e x ) )  =  ( ( r xe w ) +e ( r xe x ) )  /\  ( ( q  +  r ) xe w )  =  ( ( q xe w ) +e ( r xe w ) ) )  /\  (
( ( q  x.  r ) xe w )  =  ( q xe ( r xe w ) )  /\  (
1 xe w )  =  w  /\  ( 0 xe w )  =  0 ) ) )
4746ralrimivva 2971 . . 3  |-  ( ( q  e.  ( 0 [,) +oo )  /\  r  e.  ( 0 [,) +oo ) )  ->  A. x  e.  ( 0 [,] +oo ) A. w  e.  (
0 [,] +oo )
( ( ( r xe w )  e.  ( 0 [,] +oo )  /\  (
r xe ( w +e x ) )  =  ( ( r xe w ) +e
( r xe x ) )  /\  ( ( q  +  r ) xe w )  =  ( ( q xe w ) +e
( r xe w ) ) )  /\  ( ( ( q  x.  r ) xe w )  =  ( q xe ( r xe w ) )  /\  ( 1 xe w )  =  w  /\  ( 0 xe w )  =  0 ) ) )
4847rgen2a 2977 . 2  |-  A. q  e.  ( 0 [,) +oo ) A. r  e.  ( 0 [,) +oo ) A. x  e.  (
0 [,] +oo ) A. w  e.  (
0 [,] +oo )
( ( ( r xe w )  e.  ( 0 [,] +oo )  /\  (
r xe ( w +e x ) )  =  ( ( r xe w ) +e
( r xe x ) )  /\  ( ( q  +  r ) xe w )  =  ( ( q xe w ) +e
( r xe w ) ) )  /\  ( ( ( q  x.  r ) xe w )  =  ( q xe ( r xe w ) )  /\  ( 1 xe w )  =  w  /\  ( 0 xe w )  =  0 ) )
49 xrge0base 29685 . . . . . 6  |-  ( 0 [,] +oo )  =  ( Base `  ( RR*ss  ( 0 [,] +oo ) ) )
501fveq2i 6194 . . . . . 6  |-  ( Base `  G )  =  (
Base `  ( RR*ss  ( 0 [,] +oo ) ) )
5149, 50eqtr4i 2647 . . . . 5  |-  ( 0 [,] +oo )  =  ( Base `  G
)
525, 51resvbas 29832 . . . 4  |-  ( ( 0 [,) +oo )  e.  _V  ->  ( 0 [,] +oo )  =  ( Base `  W
) )
534, 52ax-mp 5 . . 3  |-  ( 0 [,] +oo )  =  ( Base `  W
)
54 xrge0plusg 29687 . . . . . 6  |-  +e 
=  ( +g  `  ( RR*ss  ( 0 [,] +oo ) ) )
551fveq2i 6194 . . . . . 6  |-  ( +g  `  G )  =  ( +g  `  ( RR*ss  ( 0 [,] +oo ) ) )
5654, 55eqtr4i 2647 . . . . 5  |-  +e 
=  ( +g  `  G
)
575, 56resvplusg 29833 . . . 4  |-  ( ( 0 [,) +oo )  e.  _V  ->  +e 
=  ( +g  `  W
) )
584, 57ax-mp 5 . . 3  |-  +e 
=  ( +g  `  W
)
59 ovex 6678 . . . . . 6  |-  ( 0 [,] +oo )  e. 
_V
60 ax-xrsvsca 29674 . . . . . . 7  |-  xe  =  ( .s `  RR*s )
611, 60ressvsca 16032 . . . . . 6  |-  ( ( 0 [,] +oo )  e.  _V  ->  xe 
=  ( .s `  G ) )
6259, 61ax-mp 5 . . . . 5  |-  xe  =  ( .s `  G )
635, 62resvvsca 29834 . . . 4  |-  ( ( 0 [,) +oo )  e.  _V  ->  xe 
=  ( .s `  W ) )
644, 63ax-mp 5 . . 3  |-  xe  =  ( .s `  W )
65 xrge00 29686 . . . . . 6  |-  0  =  ( 0g `  ( RR*ss  ( 0 [,] +oo ) ) )
661fveq2i 6194 . . . . . 6  |-  ( 0g
`  G )  =  ( 0g `  ( RR*ss  ( 0 [,] +oo ) ) )
6765, 66eqtr4i 2647 . . . . 5  |-  0  =  ( 0g `  G )
685, 67resv0g 29836 . . . 4  |-  ( ( 0 [,) +oo )  e.  _V  ->  0  =  ( 0g `  W ) )
694, 68ax-mp 5 . . 3  |-  0  =  ( 0g `  W )
70 df-refld 19951 . . . . . 6  |- RRfld  =  (flds  RR )
7170oveq1i 6660 . . . . 5  |-  (RRfld ↾s  ( 0 [,) +oo ) )  =  ( (flds  RR )s  ( 0 [,) +oo ) )
72 reex 10027 . . . . . 6  |-  RR  e.  _V
73 ressress 15938 . . . . . 6  |-  ( ( RR  e.  _V  /\  ( 0 [,) +oo )  e.  _V )  ->  ( (flds  RR )s  ( 0 [,) +oo ) )  =  (flds  ( RR 
i^i  ( 0 [,) +oo ) ) ) )
7472, 4, 73mp2an 708 . . . . 5  |-  ( (flds  RR )s  ( 0 [,) +oo )
)  =  (flds  ( RR  i^i  ( 0 [,) +oo ) ) )
7571, 74eqtri 2644 . . . 4  |-  (RRfld ↾s  ( 0 [,) +oo ) )  =  (flds  ( RR  i^i  ( 0 [,) +oo ) ) )
76 ax-xrssca 29673 . . . . . . . 8  |- RRfld  =  (Scalar `  RR*s )
771, 76resssca 16031 . . . . . . 7  |-  ( ( 0 [,] +oo )  e.  _V  -> RRfld  =  (Scalar `  G ) )
7859, 77ax-mp 5 . . . . . 6  |- RRfld  =  (Scalar `  G )
79 rebase 19952 . . . . . 6  |-  RR  =  ( Base ` RRfld )
805, 78, 79resvsca 29830 . . . . 5  |-  ( ( 0 [,) +oo )  e.  _V  ->  (RRfld ↾s  ( 0 [,) +oo ) )  =  (Scalar `  W ) )
814, 80ax-mp 5 . . . 4  |-  (RRfld ↾s  ( 0 [,) +oo ) )  =  (Scalar `  W
)
82 incom 3805 . . . . . 6  |-  ( ( 0 [,) +oo )  i^i  RR )  =  ( RR  i^i  ( 0 [,) +oo ) )
83 df-ss 3588 . . . . . . 7  |-  ( ( 0 [,) +oo )  C_  RR  <->  ( ( 0 [,) +oo )  i^i 
RR )  =  ( 0 [,) +oo )
)
8419, 83mpbi 220 . . . . . 6  |-  ( ( 0 [,) +oo )  i^i  RR )  =  ( 0 [,) +oo )
8582, 84eqtr3i 2646 . . . . 5  |-  ( RR 
i^i  ( 0 [,) +oo ) )  =  ( 0 [,) +oo )
8685oveq2i 6661 . . . 4  |-  (flds  ( RR  i^i  ( 0 [,) +oo ) ) )  =  (flds  ( 0 [,) +oo )
)
8775, 81, 863eqtr3ri 2653 . . 3  |-  (flds  ( 0 [,) +oo ) )  =  (Scalar `  W )
88 ax-resscn 9993 . . . . 5  |-  RR  C_  CC
8919, 88sstri 3612 . . . 4  |-  ( 0 [,) +oo )  C_  CC
90 eqid 2622 . . . . 5  |-  (flds  ( 0 [,) +oo ) )  =  (flds  ( 0 [,) +oo ) )
91 cnfldbas 19750 . . . . 5  |-  CC  =  ( Base ` fld )
9290, 91ressbas2 15931 . . . 4  |-  ( ( 0 [,) +oo )  C_  CC  ->  ( 0 [,) +oo )  =  ( Base `  (flds  ( 0 [,) +oo ) ) ) )
9389, 92ax-mp 5 . . 3  |-  ( 0 [,) +oo )  =  ( Base `  (flds  ( 0 [,) +oo ) ) )
94 cnfldadd 19751 . . . . 5  |-  +  =  ( +g  ` fld )
9590, 94ressplusg 15993 . . . 4  |-  ( ( 0 [,) +oo )  e.  _V  ->  +  =  ( +g  `  (flds  ( 0 [,) +oo ) ) ) )
964, 95ax-mp 5 . . 3  |-  +  =  ( +g  `  (flds  ( 0 [,) +oo ) ) )
97 cnfldmul 19752 . . . . 5  |-  x.  =  ( .r ` fld )
9890, 97ressmulr 16006 . . . 4  |-  ( ( 0 [,) +oo )  e.  _V  ->  x.  =  ( .r `  (flds  ( 0 [,) +oo ) ) ) )
994, 98ax-mp 5 . . 3  |-  x.  =  ( .r `  (flds  ( 0 [,) +oo ) ) )
100 cndrng 19775 . . . . 5  |-fld  e.  DivRing
101 drngring 18754 . . . . 5  |-  (fld  e.  DivRing  ->fld  e.  Ring )
102100, 101ax-mp 5 . . . 4  |-fld  e.  Ring
103 1re 10039 . . . . . 6  |-  1  e.  RR
104 0le1 10551 . . . . . 6  |-  0  <_  1
105 ltpnf 11954 . . . . . . 7  |-  ( 1  e.  RR  ->  1  < +oo )
106103, 105ax-mp 5 . . . . . 6  |-  1  < +oo
107103, 104, 1063pm3.2i 1239 . . . . 5  |-  ( 1  e.  RR  /\  0  <_  1  /\  1  < +oo )
108 0re 10040 . . . . . 6  |-  0  e.  RR
109 pnfxr 10092 . . . . . 6  |- +oo  e.  RR*
110 elico2 12237 . . . . . 6  |-  ( ( 0  e.  RR  /\ +oo  e.  RR* )  ->  (
1  e.  ( 0 [,) +oo )  <->  ( 1  e.  RR  /\  0  <_  1  /\  1  < +oo ) ) )
111108, 109, 110mp2an 708 . . . . 5  |-  ( 1  e.  ( 0 [,) +oo )  <->  ( 1  e.  RR  /\  0  <_ 
1  /\  1  < +oo ) )
112107, 111mpbir 221 . . . 4  |-  1  e.  ( 0 [,) +oo )
113 cnfld1 19771 . . . . 5  |-  1  =  ( 1r ` fld )
11490, 91, 113ress1r 29789 . . . 4  |-  ( (fld  e. 
Ring  /\  1  e.  ( 0 [,) +oo )  /\  ( 0 [,) +oo )  C_  CC )  -> 
1  =  ( 1r
`  (flds  ( 0 [,) +oo )
) ) )
115102, 112, 89, 114mp3an 1424 . . 3  |-  1  =  ( 1r `  (flds  (
0 [,) +oo )
) )
116 ringmnd 18556 . . . . 5  |-  (fld  e.  Ring  ->fld  e.  Mnd )
117100, 101, 116mp2b 10 . . . 4  |-fld  e.  Mnd
118 0e0icopnf 12282 . . . 4  |-  0  e.  ( 0 [,) +oo )
119 cnfld0 19770 . . . . 5  |-  0  =  ( 0g ` fld )
12090, 91, 119ress0g 17319 . . . 4  |-  ( (fld  e. 
Mnd  /\  0  e.  ( 0 [,) +oo )  /\  ( 0 [,) +oo )  C_  CC )  ->  0  =  ( 0g `  (flds  ( 0 [,) +oo ) ) ) )
121117, 118, 89, 120mp3an 1424 . . 3  |-  0  =  ( 0g `  (flds  (
0 [,) +oo )
) )
12253, 58, 64, 69, 87, 93, 96, 99, 115, 121isslmd 29755 . 2  |-  ( W  e. SLMod 
<->  ( W  e. CMnd  /\  (flds  (
0 [,) +oo )
)  e. SRing  /\  A. q  e.  ( 0 [,) +oo ) A. r  e.  ( 0 [,) +oo ) A. x  e.  (
0 [,] +oo ) A. w  e.  (
0 [,] +oo )
( ( ( r xe w )  e.  ( 0 [,] +oo )  /\  (
r xe ( w +e x ) )  =  ( ( r xe w ) +e
( r xe x ) )  /\  ( ( q  +  r ) xe w )  =  ( ( q xe w ) +e
( r xe w ) ) )  /\  ( ( ( q  x.  r ) xe w )  =  ( q xe ( r xe w ) )  /\  ( 1 xe w )  =  w  /\  ( 0 xe w )  =  0 ) ) ) )
1238, 9, 48, 122mpbir3an 1244 1  |-  W  e. SLMod
Colors of variables: wff setvar class
Syntax hints:    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   _Vcvv 3200    i^i cin 3573    C_ wss 3574   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   CCcc 9934   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939    x. cmul 9941   +oocpnf 10071   RR*cxr 10073    < clt 10074    <_ cle 10075   +ecxad 11944   xecxmu 11945   [,)cico 12177   [,]cicc 12178   Basecbs 15857   ↾s cress 15858   +g cplusg 15941   .rcmulr 15942  Scalarcsca 15944   .scvsca 15945   0gc0g 16100   RR*scxrs 16160   Mndcmnd 17294  CMndccmn 18193   1rcur 18501  SRingcsrg 18505   Ringcrg 18547   DivRingcdr 18747  ℂfldccnfld 19746  RRfldcrefld 19950  SLModcslmd 29753   ↾v cresv 29824
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-addf 10015  ax-mulf 10016  ax-xrssca 29673  ax-xrsvsca 29674
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-tpos 7352  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ico 12181  df-icc 12182  df-fz 12327  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-0g 16102  df-xrs 16162  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-grp 17425  df-minusg 17426  df-cmn 18195  df-abl 18196  df-mgp 18490  df-ur 18502  df-srg 18506  df-ring 18549  df-cring 18550  df-oppr 18623  df-dvdsr 18641  df-unit 18642  df-invr 18672  df-dvr 18683  df-drng 18749  df-cnfld 19747  df-refld 19951  df-slmd 29754  df-resv 29825
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator