MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rrxcph Structured version   Visualization version   Unicode version

Theorem rrxcph 23180
Description: Generalized Euclidean real spaces are pre-Hilbert spaces. (Contributed by Thierry Arnoux, 23-Jun-2019.) (Proof shortened by AV, 22-Jul-2019.)
Hypotheses
Ref Expression
rrxval.r  |-  H  =  (ℝ^ `  I )
rrxbase.b  |-  B  =  ( Base `  H
)
Assertion
Ref Expression
rrxcph  |-  ( I  e.  V  ->  H  e.  CPreHil )

Proof of Theorem rrxcph
Dummy variables  f  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rrxval.r . . 3  |-  H  =  (ℝ^ `  I )
21rrxval 23175 . 2  |-  ( I  e.  V  ->  H  =  (toCHil `  (RRfld freeLMod  I ) ) )
3 eqid 2622 . . 3  |-  (toCHil `  (RRfld freeLMod  I ) )  =  (toCHil `  (RRfld freeLMod  I ) )
4 eqid 2622 . . 3  |-  ( Base `  (RRfld freeLMod  I ) )  =  ( Base `  (RRfld freeLMod  I ) )
5 eqid 2622 . . 3  |-  (Scalar `  (RRfld freeLMod  I ) )  =  (Scalar `  (RRfld freeLMod  I ) )
6 eqid 2622 . . . 4  |-  (RRfld freeLMod  I )  =  (RRfld freeLMod  I )
7 rebase 19952 . . . 4  |-  RR  =  ( Base ` RRfld )
8 remulr 19957 . . . 4  |-  x.  =  ( .r ` RRfld )
9 eqid 2622 . . . 4  |-  ( .i
`  (RRfld freeLMod  I ) )  =  ( .i `  (RRfld freeLMod  I ) )
10 eqid 2622 . . . 4  |-  ( 0g
`  (RRfld freeLMod  I ) )  =  ( 0g `  (RRfld freeLMod  I ) )
11 re0g 19958 . . . 4  |-  0  =  ( 0g ` RRfld )
12 refldcj 19966 . . . 4  |-  *  =  ( *r ` RRfld )
13 refld 19965 . . . . 5  |- RRfld  e. Field
1413a1i 11 . . . 4  |-  ( I  e.  V  -> RRfld  e. Field )
15 fconstmpt 5163 . . . . 5  |-  ( I  X.  { 0 } )  =  ( x  e.  I  |->  0 )
166, 7, 4frlmbasf 20104 . . . . . . . 8  |-  ( ( I  e.  V  /\  f  e.  ( Base `  (RRfld freeLMod  I ) ) )  ->  f : I --> RR )
17 ffn 6045 . . . . . . . 8  |-  ( f : I --> RR  ->  f  Fn  I )
1816, 17syl 17 . . . . . . 7  |-  ( ( I  e.  V  /\  f  e.  ( Base `  (RRfld freeLMod  I ) ) )  ->  f  Fn  I
)
19183adant3 1081 . . . . . 6  |-  ( ( I  e.  V  /\  f  e.  ( Base `  (RRfld freeLMod  I ) )  /\  ( f ( .i
`  (RRfld freeLMod  I ) ) f )  =  0 )  ->  f  Fn  I )
20 simpl 473 . . . . . . . . . . . . . . . . 17  |-  ( ( I  e.  V  /\  f  e.  ( Base `  (RRfld freeLMod  I ) ) )  ->  I  e.  V
)
2113a1i 11 . . . . . . . . . . . . . . . . 17  |-  ( ( I  e.  V  /\  f  e.  ( Base `  (RRfld freeLMod  I ) ) )  -> RRfld  e. Field )
22 simpr 477 . . . . . . . . . . . . . . . . 17  |-  ( ( I  e.  V  /\  f  e.  ( Base `  (RRfld freeLMod  I ) ) )  ->  f  e.  (
Base `  (RRfld freeLMod  I ) ) )
236, 7, 8, 4, 9frlmipval 20118 . . . . . . . . . . . . . . . . 17  |-  ( ( ( I  e.  V  /\ RRfld  e. Field )  /\  (
f  e.  ( Base `  (RRfld freeLMod  I ) )  /\  f  e.  ( Base `  (RRfld freeLMod  I ) ) ) )  ->  ( f
( .i `  (RRfld freeLMod  I ) ) f )  =  (RRfld  gsumg  ( f  oF  x.  f ) ) )
2420, 21, 22, 22, 23syl22anc 1327 . . . . . . . . . . . . . . . 16  |-  ( ( I  e.  V  /\  f  e.  ( Base `  (RRfld freeLMod  I ) ) )  ->  ( f ( .i `  (RRfld freeLMod  I ) ) f )  =  (RRfld  gsumg  ( f  oF  x.  f ) ) )
25 ovexd 6680 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( I  e.  V  /\  f  e.  ( Base `  (RRfld freeLMod  I ) ) )  /\  x  e.  I )  ->  (
( f `  x
)  x.  ( f `
 x ) )  e.  _V )
26 inidm 3822 . . . . . . . . . . . . . . . . . . . 20  |-  ( I  i^i  I )  =  I
27 eqidd 2623 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( I  e.  V  /\  f  e.  ( Base `  (RRfld freeLMod  I ) ) )  /\  x  e.  I )  ->  (
f `  x )  =  ( f `  x ) )
2818, 18, 20, 20, 26, 27, 27offval 6904 . . . . . . . . . . . . . . . . . . 19  |-  ( ( I  e.  V  /\  f  e.  ( Base `  (RRfld freeLMod  I ) ) )  ->  ( f  oF  x.  f )  =  ( x  e.  I  |->  ( ( f `
 x )  x.  ( f `  x
) ) ) )
2918, 18, 20, 20, 26, 27, 27ofval 6906 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( I  e.  V  /\  f  e.  ( Base `  (RRfld freeLMod  I ) ) )  /\  x  e.  I )  ->  (
( f  oF  x.  f ) `  x )  =  ( ( f `  x
)  x.  ( f `
 x ) ) )
3016ffvelrnda 6359 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( I  e.  V  /\  f  e.  ( Base `  (RRfld freeLMod  I ) ) )  /\  x  e.  I )  ->  (
f `  x )  e.  RR )
3130, 30remulcld 10070 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( I  e.  V  /\  f  e.  ( Base `  (RRfld freeLMod  I ) ) )  /\  x  e.  I )  ->  (
( f `  x
)  x.  ( f `
 x ) )  e.  RR )
3229, 31eqeltrd 2701 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( I  e.  V  /\  f  e.  ( Base `  (RRfld freeLMod  I ) ) )  /\  x  e.  I )  ->  (
( f  oF  x.  f ) `  x )  e.  RR )
3325, 28, 32fmpt2d 6393 . . . . . . . . . . . . . . . . . 18  |-  ( ( I  e.  V  /\  f  e.  ( Base `  (RRfld freeLMod  I ) ) )  ->  ( f  oF  x.  f ) : I --> RR )
34 ovexd 6680 . . . . . . . . . . . . . . . . . . 19  |-  ( ( I  e.  V  /\  f  e.  ( Base `  (RRfld freeLMod  I ) ) )  ->  ( f  oF  x.  f )  e.  _V )
35 ffun 6048 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( f  oF  x.  f ) : I --> RR  ->  Fun  ( f  oF  x.  f
) )
3633, 35syl 17 . . . . . . . . . . . . . . . . . . 19  |-  ( ( I  e.  V  /\  f  e.  ( Base `  (RRfld freeLMod  I ) ) )  ->  Fun  ( f  oF  x.  f
) )
376, 11, 4frlmbasfsupp 20102 . . . . . . . . . . . . . . . . . . 19  |-  ( ( I  e.  V  /\  f  e.  ( Base `  (RRfld freeLMod  I ) ) )  ->  f finSupp  0 )
38 0red 10041 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( I  e.  V  /\  f  e.  ( Base `  (RRfld freeLMod  I ) ) )  ->  0  e.  RR )
39 simpr 477 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( I  e.  V  /\  f  e.  ( Base `  (RRfld freeLMod  I ) ) )  /\  x  e.  RR )  ->  x  e.  RR )
4039recnd 10068 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( I  e.  V  /\  f  e.  ( Base `  (RRfld freeLMod  I ) ) )  /\  x  e.  RR )  ->  x  e.  CC )
4140mul02d 10234 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( I  e.  V  /\  f  e.  ( Base `  (RRfld freeLMod  I ) ) )  /\  x  e.  RR )  ->  (
0  x.  x )  =  0 )
4220, 38, 16, 16, 41suppofss1d 7332 . . . . . . . . . . . . . . . . . . 19  |-  ( ( I  e.  V  /\  f  e.  ( Base `  (RRfld freeLMod  I ) ) )  ->  ( ( f  oF  x.  f
) supp  0 )  C_  ( f supp  0 ) )
43 fsuppsssupp 8291 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( f  oF  x.  f )  e.  _V  /\  Fun  ( f  oF  x.  f ) )  /\  ( f finSupp  0  /\  ( ( f  oF  x.  f ) supp  0 )  C_  (
f supp  0 ) ) )  ->  ( f  oF  x.  f
) finSupp  0 )
4434, 36, 37, 42, 43syl22anc 1327 . . . . . . . . . . . . . . . . . 18  |-  ( ( I  e.  V  /\  f  e.  ( Base `  (RRfld freeLMod  I ) ) )  ->  ( f  oF  x.  f ) finSupp 
0 )
45 regsumsupp 19968 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( f  oF  x.  f ) : I --> RR  /\  (
f  oF  x.  f ) finSupp  0  /\  I  e.  V )  ->  (RRfld  gsumg  ( f  oF  x.  f ) )  =  sum_ x  e.  ( ( f  oF  x.  f ) supp  0
) ( ( f  oF  x.  f
) `  x )
)
4633, 44, 20, 45syl3anc 1326 . . . . . . . . . . . . . . . . 17  |-  ( ( I  e.  V  /\  f  e.  ( Base `  (RRfld freeLMod  I ) ) )  ->  (RRfld  gsumg  ( f  oF  x.  f ) )  =  sum_ x  e.  ( ( f  oF  x.  f ) supp  0
) ( ( f  oF  x.  f
) `  x )
)
47 suppssdm 7308 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( f supp  0 )  C_  dom  f
48 fdm 6051 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( f : I --> RR  ->  dom  f  =  I )
4916, 48syl 17 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( I  e.  V  /\  f  e.  ( Base `  (RRfld freeLMod  I ) ) )  ->  dom  f  =  I )
5047, 49syl5sseq 3653 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( I  e.  V  /\  f  e.  ( Base `  (RRfld freeLMod  I ) ) )  ->  ( f supp  0
)  C_  I )
5142, 50sstrd 3613 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( I  e.  V  /\  f  e.  ( Base `  (RRfld freeLMod  I ) ) )  ->  ( ( f  oF  x.  f
) supp  0 )  C_  I )
5251sselda 3603 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( I  e.  V  /\  f  e.  ( Base `  (RRfld freeLMod  I ) ) )  /\  x  e.  ( ( f  oF  x.  f ) supp  0 ) )  ->  x  e.  I )
5352, 29syldan 487 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( I  e.  V  /\  f  e.  ( Base `  (RRfld freeLMod  I ) ) )  /\  x  e.  ( ( f  oF  x.  f ) supp  0 ) )  -> 
( ( f  oF  x.  f ) `
 x )  =  ( ( f `  x )  x.  (
f `  x )
) )
5453sumeq2dv 14433 . . . . . . . . . . . . . . . . 17  |-  ( ( I  e.  V  /\  f  e.  ( Base `  (RRfld freeLMod  I ) ) )  ->  sum_ x  e.  ( ( f  oF  x.  f ) supp  0
) ( ( f  oF  x.  f
) `  x )  =  sum_ x  e.  ( ( f  oF  x.  f ) supp  0
) ( ( f `
 x )  x.  ( f `  x
) ) )
5546, 54eqtrd 2656 . . . . . . . . . . . . . . . 16  |-  ( ( I  e.  V  /\  f  e.  ( Base `  (RRfld freeLMod  I ) ) )  ->  (RRfld  gsumg  ( f  oF  x.  f ) )  =  sum_ x  e.  ( ( f  oF  x.  f ) supp  0
) ( ( f `
 x )  x.  ( f `  x
) ) )
5624, 55eqtrd 2656 . . . . . . . . . . . . . . 15  |-  ( ( I  e.  V  /\  f  e.  ( Base `  (RRfld freeLMod  I ) ) )  ->  ( f ( .i `  (RRfld freeLMod  I ) ) f )  = 
sum_ x  e.  (
( f  oF  x.  f ) supp  0
) ( ( f `
 x )  x.  ( f `  x
) ) )
57563adant3 1081 . . . . . . . . . . . . . 14  |-  ( ( I  e.  V  /\  f  e.  ( Base `  (RRfld freeLMod  I ) )  /\  ( f ( .i
`  (RRfld freeLMod  I ) ) f )  =  0 )  ->  ( f
( .i `  (RRfld freeLMod  I ) ) f )  =  sum_ x  e.  ( ( f  oF  x.  f ) supp  0
) ( ( f `
 x )  x.  ( f `  x
) ) )
58 simp3 1063 . . . . . . . . . . . . . 14  |-  ( ( I  e.  V  /\  f  e.  ( Base `  (RRfld freeLMod  I ) )  /\  ( f ( .i
`  (RRfld freeLMod  I ) ) f )  =  0 )  ->  ( f
( .i `  (RRfld freeLMod  I ) ) f )  =  0 )
5957, 58eqtr3d 2658 . . . . . . . . . . . . 13  |-  ( ( I  e.  V  /\  f  e.  ( Base `  (RRfld freeLMod  I ) )  /\  ( f ( .i
`  (RRfld freeLMod  I ) ) f )  =  0 )  ->  sum_ x  e.  ( ( f  oF  x.  f ) supp  0 ) ( ( f `  x )  x.  ( f `  x ) )  =  0 )
6037fsuppimpd 8282 . . . . . . . . . . . . . . . 16  |-  ( ( I  e.  V  /\  f  e.  ( Base `  (RRfld freeLMod  I ) ) )  ->  ( f supp  0
)  e.  Fin )
61 ssfi 8180 . . . . . . . . . . . . . . . 16  |-  ( ( ( f supp  0 )  e.  Fin  /\  (
( f  oF  x.  f ) supp  0
)  C_  ( f supp  0 ) )  -> 
( ( f  oF  x.  f ) supp  0 )  e.  Fin )
6260, 42, 61syl2anc 693 . . . . . . . . . . . . . . 15  |-  ( ( I  e.  V  /\  f  e.  ( Base `  (RRfld freeLMod  I ) ) )  ->  ( ( f  oF  x.  f
) supp  0 )  e. 
Fin )
6352, 31syldan 487 . . . . . . . . . . . . . . 15  |-  ( ( ( I  e.  V  /\  f  e.  ( Base `  (RRfld freeLMod  I ) ) )  /\  x  e.  ( ( f  oF  x.  f ) supp  0 ) )  -> 
( ( f `  x )  x.  (
f `  x )
)  e.  RR )
6430msqge0d 10596 . . . . . . . . . . . . . . . 16  |-  ( ( ( I  e.  V  /\  f  e.  ( Base `  (RRfld freeLMod  I ) ) )  /\  x  e.  I )  ->  0  <_  ( ( f `  x )  x.  (
f `  x )
) )
6552, 64syldan 487 . . . . . . . . . . . . . . 15  |-  ( ( ( I  e.  V  /\  f  e.  ( Base `  (RRfld freeLMod  I ) ) )  /\  x  e.  ( ( f  oF  x.  f ) supp  0 ) )  -> 
0  <_  ( (
f `  x )  x.  ( f `  x
) ) )
6662, 63, 65fsum00 14530 . . . . . . . . . . . . . 14  |-  ( ( I  e.  V  /\  f  e.  ( Base `  (RRfld freeLMod  I ) ) )  ->  ( sum_ x  e.  ( ( f  oF  x.  f ) supp  0 ) ( ( f `  x )  x.  ( f `  x ) )  =  0  <->  A. x  e.  ( ( f  oF  x.  f ) supp  0
) ( ( f `
 x )  x.  ( f `  x
) )  =  0 ) )
67663adant3 1081 . . . . . . . . . . . . 13  |-  ( ( I  e.  V  /\  f  e.  ( Base `  (RRfld freeLMod  I ) )  /\  ( f ( .i
`  (RRfld freeLMod  I ) ) f )  =  0 )  ->  ( sum_ x  e.  ( ( f  oF  x.  f
) supp  0 ) ( ( f `  x
)  x.  ( f `
 x ) )  =  0  <->  A. x  e.  ( ( f  oF  x.  f ) supp  0 ) ( ( f `  x )  x.  ( f `  x ) )  =  0 ) )
6859, 67mpbid 222 . . . . . . . . . . . 12  |-  ( ( I  e.  V  /\  f  e.  ( Base `  (RRfld freeLMod  I ) )  /\  ( f ( .i
`  (RRfld freeLMod  I ) ) f )  =  0 )  ->  A. x  e.  ( ( f  oF  x.  f ) supp  0 ) ( ( f `  x )  x.  ( f `  x ) )  =  0 )
6968r19.21bi 2932 . . . . . . . . . . 11  |-  ( ( ( I  e.  V  /\  f  e.  ( Base `  (RRfld freeLMod  I ) )  /\  ( f ( .i `  (RRfld freeLMod  I ) ) f )  =  0 )  /\  x  e.  ( ( f  oF  x.  f ) supp  0 ) )  -> 
( ( f `  x )  x.  (
f `  x )
)  =  0 )
7069adantlr 751 . . . . . . . . . 10  |-  ( ( ( ( I  e.  V  /\  f  e.  ( Base `  (RRfld freeLMod  I ) )  /\  (
f ( .i `  (RRfld freeLMod  I ) ) f )  =  0 )  /\  x  e.  I
)  /\  x  e.  ( ( f  oF  x.  f ) supp  0 ) )  -> 
( ( f `  x )  x.  (
f `  x )
)  =  0 )
71303adantl3 1219 . . . . . . . . . . . . 13  |-  ( ( ( I  e.  V  /\  f  e.  ( Base `  (RRfld freeLMod  I ) )  /\  ( f ( .i `  (RRfld freeLMod  I ) ) f )  =  0 )  /\  x  e.  I )  ->  (
f `  x )  e.  RR )
7271recnd 10068 . . . . . . . . . . . 12  |-  ( ( ( I  e.  V  /\  f  e.  ( Base `  (RRfld freeLMod  I ) )  /\  ( f ( .i `  (RRfld freeLMod  I ) ) f )  =  0 )  /\  x  e.  I )  ->  (
f `  x )  e.  CC )
7372, 72mul0ord 10677 . . . . . . . . . . 11  |-  ( ( ( I  e.  V  /\  f  e.  ( Base `  (RRfld freeLMod  I ) )  /\  ( f ( .i `  (RRfld freeLMod  I ) ) f )  =  0 )  /\  x  e.  I )  ->  (
( ( f `  x )  x.  (
f `  x )
)  =  0  <->  (
( f `  x
)  =  0  \/  ( f `  x
)  =  0 ) ) )
7473adantr 481 . . . . . . . . . 10  |-  ( ( ( ( I  e.  V  /\  f  e.  ( Base `  (RRfld freeLMod  I ) )  /\  (
f ( .i `  (RRfld freeLMod  I ) ) f )  =  0 )  /\  x  e.  I
)  /\  x  e.  ( ( f  oF  x.  f ) supp  0 ) )  -> 
( ( ( f `
 x )  x.  ( f `  x
) )  =  0  <-> 
( ( f `  x )  =  0  \/  ( f `  x )  =  0 ) ) )
7570, 74mpbid 222 . . . . . . . . 9  |-  ( ( ( ( I  e.  V  /\  f  e.  ( Base `  (RRfld freeLMod  I ) )  /\  (
f ( .i `  (RRfld freeLMod  I ) ) f )  =  0 )  /\  x  e.  I
)  /\  x  e.  ( ( f  oF  x.  f ) supp  0 ) )  -> 
( ( f `  x )  =  0  \/  ( f `  x )  =  0 ) )
76 oridm 536 . . . . . . . . 9  |-  ( ( ( f `  x
)  =  0  \/  ( f `  x
)  =  0 )  <-> 
( f `  x
)  =  0 )
7775, 76sylib 208 . . . . . . . 8  |-  ( ( ( ( I  e.  V  /\  f  e.  ( Base `  (RRfld freeLMod  I ) )  /\  (
f ( .i `  (RRfld freeLMod  I ) ) f )  =  0 )  /\  x  e.  I
)  /\  x  e.  ( ( f  oF  x.  f ) supp  0 ) )  -> 
( f `  x
)  =  0 )
78333adant3 1081 . . . . . . . . . . 11  |-  ( ( I  e.  V  /\  f  e.  ( Base `  (RRfld freeLMod  I ) )  /\  ( f ( .i
`  (RRfld freeLMod  I ) ) f )  =  0 )  ->  ( f  oF  x.  f
) : I --> RR )
7978adantr 481 . . . . . . . . . 10  |-  ( ( ( I  e.  V  /\  f  e.  ( Base `  (RRfld freeLMod  I ) )  /\  ( f ( .i `  (RRfld freeLMod  I ) ) f )  =  0 )  /\  x  e.  I )  ->  (
f  oF  x.  f ) : I --> RR )
80 ssid 3624 . . . . . . . . . . 11  |-  ( ( f  oF  x.  f ) supp  0 ) 
C_  ( ( f  oF  x.  f
) supp  0 )
8180a1i 11 . . . . . . . . . 10  |-  ( ( ( I  e.  V  /\  f  e.  ( Base `  (RRfld freeLMod  I ) )  /\  ( f ( .i `  (RRfld freeLMod  I ) ) f )  =  0 )  /\  x  e.  I )  ->  (
( f  oF  x.  f ) supp  0
)  C_  ( (
f  oF  x.  f ) supp  0 ) )
82 simpl1 1064 . . . . . . . . . 10  |-  ( ( ( I  e.  V  /\  f  e.  ( Base `  (RRfld freeLMod  I ) )  /\  ( f ( .i `  (RRfld freeLMod  I ) ) f )  =  0 )  /\  x  e.  I )  ->  I  e.  V )
83 0red 10041 . . . . . . . . . 10  |-  ( ( ( I  e.  V  /\  f  e.  ( Base `  (RRfld freeLMod  I ) )  /\  ( f ( .i `  (RRfld freeLMod  I ) ) f )  =  0 )  /\  x  e.  I )  ->  0  e.  RR )
8479, 81, 82, 83suppssr 7326 . . . . . . . . 9  |-  ( ( ( ( I  e.  V  /\  f  e.  ( Base `  (RRfld freeLMod  I ) )  /\  (
f ( .i `  (RRfld freeLMod  I ) ) f )  =  0 )  /\  x  e.  I
)  /\  x  e.  ( I  \  (
( f  oF  x.  f ) supp  0
) ) )  -> 
( ( f  oF  x.  f ) `
 x )  =  0 )
85293adantl3 1219 . . . . . . . . . . . . 13  |-  ( ( ( I  e.  V  /\  f  e.  ( Base `  (RRfld freeLMod  I ) )  /\  ( f ( .i `  (RRfld freeLMod  I ) ) f )  =  0 )  /\  x  e.  I )  ->  (
( f  oF  x.  f ) `  x )  =  ( ( f `  x
)  x.  ( f `
 x ) ) )
8685eqeq1d 2624 . . . . . . . . . . . 12  |-  ( ( ( I  e.  V  /\  f  e.  ( Base `  (RRfld freeLMod  I ) )  /\  ( f ( .i `  (RRfld freeLMod  I ) ) f )  =  0 )  /\  x  e.  I )  ->  (
( ( f  oF  x.  f ) `
 x )  =  0  <->  ( ( f `
 x )  x.  ( f `  x
) )  =  0 ) )
8786, 73bitrd 268 . . . . . . . . . . 11  |-  ( ( ( I  e.  V  /\  f  e.  ( Base `  (RRfld freeLMod  I ) )  /\  ( f ( .i `  (RRfld freeLMod  I ) ) f )  =  0 )  /\  x  e.  I )  ->  (
( ( f  oF  x.  f ) `
 x )  =  0  <->  ( ( f `
 x )  =  0  \/  ( f `
 x )  =  0 ) ) )
8887, 76syl6bb 276 . . . . . . . . . 10  |-  ( ( ( I  e.  V  /\  f  e.  ( Base `  (RRfld freeLMod  I ) )  /\  ( f ( .i `  (RRfld freeLMod  I ) ) f )  =  0 )  /\  x  e.  I )  ->  (
( ( f  oF  x.  f ) `
 x )  =  0  <->  ( f `  x )  =  0 ) )
8988biimpa 501 . . . . . . . . 9  |-  ( ( ( ( I  e.  V  /\  f  e.  ( Base `  (RRfld freeLMod  I ) )  /\  (
f ( .i `  (RRfld freeLMod  I ) ) f )  =  0 )  /\  x  e.  I
)  /\  ( (
f  oF  x.  f ) `  x
)  =  0 )  ->  ( f `  x )  =  0 )
9084, 89syldan 487 . . . . . . . 8  |-  ( ( ( ( I  e.  V  /\  f  e.  ( Base `  (RRfld freeLMod  I ) )  /\  (
f ( .i `  (RRfld freeLMod  I ) ) f )  =  0 )  /\  x  e.  I
)  /\  x  e.  ( I  \  (
( f  oF  x.  f ) supp  0
) ) )  -> 
( f `  x
)  =  0 )
91 undif 4049 . . . . . . . . . . . . 13  |-  ( ( ( f  oF  x.  f ) supp  0
)  C_  I  <->  ( (
( f  oF  x.  f ) supp  0
)  u.  ( I 
\  ( ( f  oF  x.  f
) supp  0 ) ) )  =  I )
9251, 91sylib 208 . . . . . . . . . . . 12  |-  ( ( I  e.  V  /\  f  e.  ( Base `  (RRfld freeLMod  I ) ) )  ->  ( ( ( f  oF  x.  f ) supp  0 )  u.  ( I  \ 
( ( f  oF  x.  f ) supp  0 ) ) )  =  I )
9392eleq2d 2687 . . . . . . . . . . 11  |-  ( ( I  e.  V  /\  f  e.  ( Base `  (RRfld freeLMod  I ) ) )  ->  ( x  e.  ( ( ( f  oF  x.  f
) supp  0 )  u.  ( I  \  (
( f  oF  x.  f ) supp  0
) ) )  <->  x  e.  I ) )
94933adant3 1081 . . . . . . . . . 10  |-  ( ( I  e.  V  /\  f  e.  ( Base `  (RRfld freeLMod  I ) )  /\  ( f ( .i
`  (RRfld freeLMod  I ) ) f )  =  0 )  ->  ( x  e.  ( ( ( f  oF  x.  f
) supp  0 )  u.  ( I  \  (
( f  oF  x.  f ) supp  0
) ) )  <->  x  e.  I ) )
9594biimpar 502 . . . . . . . . 9  |-  ( ( ( I  e.  V  /\  f  e.  ( Base `  (RRfld freeLMod  I ) )  /\  ( f ( .i `  (RRfld freeLMod  I ) ) f )  =  0 )  /\  x  e.  I )  ->  x  e.  ( ( ( f  oF  x.  f
) supp  0 )  u.  ( I  \  (
( f  oF  x.  f ) supp  0
) ) ) )
96 elun 3753 . . . . . . . . 9  |-  ( x  e.  ( ( ( f  oF  x.  f ) supp  0 )  u.  ( I  \ 
( ( f  oF  x.  f ) supp  0 ) ) )  <-> 
( x  e.  ( ( f  oF  x.  f ) supp  0
)  \/  x  e.  ( I  \  (
( f  oF  x.  f ) supp  0
) ) ) )
9795, 96sylib 208 . . . . . . . 8  |-  ( ( ( I  e.  V  /\  f  e.  ( Base `  (RRfld freeLMod  I ) )  /\  ( f ( .i `  (RRfld freeLMod  I ) ) f )  =  0 )  /\  x  e.  I )  ->  (
x  e.  ( ( f  oF  x.  f ) supp  0 )  \/  x  e.  ( I  \  ( ( f  oF  x.  f ) supp  0 ) ) ) )
9877, 90, 97mpjaodan 827 . . . . . . 7  |-  ( ( ( I  e.  V  /\  f  e.  ( Base `  (RRfld freeLMod  I ) )  /\  ( f ( .i `  (RRfld freeLMod  I ) ) f )  =  0 )  /\  x  e.  I )  ->  (
f `  x )  =  0 )
9998ralrimiva 2966 . . . . . 6  |-  ( ( I  e.  V  /\  f  e.  ( Base `  (RRfld freeLMod  I ) )  /\  ( f ( .i
`  (RRfld freeLMod  I ) ) f )  =  0 )  ->  A. x  e.  I  ( f `  x )  =  0 )
100 fconstfv 6476 . . . . . . 7  |-  ( f : I --> { 0 }  <->  ( f  Fn  I  /\  A. x  e.  I  ( f `  x )  =  0 ) )
101 c0ex 10034 . . . . . . . 8  |-  0  e.  _V
102101fconst2 6470 . . . . . . 7  |-  ( f : I --> { 0 }  <->  f  =  ( I  X.  { 0 } ) )
103100, 102sylbb1 227 . . . . . 6  |-  ( ( f  Fn  I  /\  A. x  e.  I  ( f `  x )  =  0 )  -> 
f  =  ( I  X.  { 0 } ) )
10419, 99, 103syl2anc 693 . . . . 5  |-  ( ( I  e.  V  /\  f  e.  ( Base `  (RRfld freeLMod  I ) )  /\  ( f ( .i
`  (RRfld freeLMod  I ) ) f )  =  0 )  ->  f  =  ( I  X.  { 0 } ) )
105 isfld 18756 . . . . . . . . . . 11  |-  (RRfld  e. Field  <->  (RRfld  e.  DivRing  /\ RRfld  e.  CRing ) )
10613, 105mpbi 220 . . . . . . . . . 10  |-  (RRfld  e.  DivRing  /\ RRfld  e.  CRing )
107106simpli 474 . . . . . . . . 9  |- RRfld  e.  DivRing
108 drngring 18754 . . . . . . . . 9  |-  (RRfld  e.  DivRing  -> RRfld 
e.  Ring )
109107, 108ax-mp 5 . . . . . . . 8  |- RRfld  e.  Ring
1106, 11frlm0 20098 . . . . . . . 8  |-  ( (RRfld 
e.  Ring  /\  I  e.  V )  ->  (
I  X.  { 0 } )  =  ( 0g `  (RRfld freeLMod  I ) ) )
111109, 110mpan 706 . . . . . . 7  |-  ( I  e.  V  ->  (
I  X.  { 0 } )  =  ( 0g `  (RRfld freeLMod  I ) ) )
11215, 111syl5reqr 2671 . . . . . 6  |-  ( I  e.  V  ->  ( 0g `  (RRfld freeLMod  I ) )  =  ( x  e.  I  |->  0 ) )
1131123ad2ant1 1082 . . . . 5  |-  ( ( I  e.  V  /\  f  e.  ( Base `  (RRfld freeLMod  I ) )  /\  ( f ( .i
`  (RRfld freeLMod  I ) ) f )  =  0 )  ->  ( 0g `  (RRfld freeLMod  I ) )  =  ( x  e.  I  |->  0 ) )
11415, 104, 1133eqtr4a 2682 . . . 4  |-  ( ( I  e.  V  /\  f  e.  ( Base `  (RRfld freeLMod  I ) )  /\  ( f ( .i
`  (RRfld freeLMod  I ) ) f )  =  0 )  ->  f  =  ( 0g `  (RRfld freeLMod  I ) ) )
115 cjre 13879 . . . . 5  |-  ( x  e.  RR  ->  (
* `  x )  =  x )
116115adantl 482 . . . 4  |-  ( ( I  e.  V  /\  x  e.  RR )  ->  ( * `  x
)  =  x )
117 id 22 . . . 4  |-  ( I  e.  V  ->  I  e.  V )
1186, 7, 8, 4, 9, 10, 11, 12, 14, 114, 116, 117frlmphl 20120 . . 3  |-  ( I  e.  V  ->  (RRfld freeLMod  I )  e.  PreHil )
119 df-refld 19951 . . . 4  |- RRfld  =  (flds  RR )
1206frlmsca 20097 . . . . 5  |-  ( (RRfld 
e. Field  /\  I  e.  V
)  -> RRfld  =  (Scalar `  (RRfld freeLMod  I ) ) )
12113, 120mpan 706 . . . 4  |-  ( I  e.  V  -> RRfld  =  (Scalar `  (RRfld freeLMod  I ) ) )
122119, 121syl5reqr 2671 . . 3  |-  ( I  e.  V  ->  (Scalar `  (RRfld freeLMod  I ) )  =  (flds  RR ) )
123 simpr1 1067 . . . 4  |-  ( ( I  e.  V  /\  ( f  e.  RR  /\  f  e.  RR  /\  0  <_  f ) )  ->  f  e.  RR )
124 simpr3 1069 . . . 4  |-  ( ( I  e.  V  /\  ( f  e.  RR  /\  f  e.  RR  /\  0  <_  f ) )  ->  0  <_  f
)
125123, 124resqrtcld 14156 . . 3  |-  ( ( I  e.  V  /\  ( f  e.  RR  /\  f  e.  RR  /\  0  <_  f ) )  ->  ( sqr `  f
)  e.  RR )
12662, 63, 65fsumge0 14527 . . . . 5  |-  ( ( I  e.  V  /\  f  e.  ( Base `  (RRfld freeLMod  I ) ) )  ->  0  <_  sum_ x  e.  ( ( f  oF  x.  f ) supp  0 ) ( ( f `  x )  x.  ( f `  x ) ) )
127126, 55breqtrrd 4681 . . . 4  |-  ( ( I  e.  V  /\  f  e.  ( Base `  (RRfld freeLMod  I ) ) )  ->  0  <_  (RRfld  gsumg  (
f  oF  x.  f ) ) )
128127, 24breqtrrd 4681 . . 3  |-  ( ( I  e.  V  /\  f  e.  ( Base `  (RRfld freeLMod  I ) ) )  ->  0  <_  (
f ( .i `  (RRfld freeLMod  I ) ) f ) )
1293, 4, 5, 118, 122, 9, 125, 128tchcph 23036 . 2  |-  ( I  e.  V  ->  (toCHil `  (RRfld freeLMod  I ) )  e.  CPreHil )
1302, 129eqeltrd 2701 1  |-  ( I  e.  V  ->  H  e.  CPreHil )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   _Vcvv 3200    \ cdif 3571    u. cun 3572    C_ wss 3574   {csn 4177   class class class wbr 4653    |-> cmpt 4729    X. cxp 5112   dom cdm 5114   Fun wfun 5882    Fn wfn 5883   -->wf 5884   ` cfv 5888  (class class class)co 6650    oFcof 6895   supp csupp 7295   Fincfn 7955   finSupp cfsupp 8275   RRcr 9935   0cc0 9936    x. cmul 9941    <_ cle 10075   *ccj 13836   sum_csu 14416   Basecbs 15857   ↾s cress 15858  Scalarcsca 15944   .icip 15946   0gc0g 16100    gsumg cgsu 16101   Ringcrg 18547   CRingccrg 18548   DivRingcdr 18747  Fieldcfield 18748  ℂfldccnfld 19746  RRfldcrefld 19950   freeLMod cfrlm 20090   CPreHilccph 22966  toCHilctch 22967  ℝ^crrx 23171
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-tpos 7352  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ico 12181  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-sum 14417  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-prds 16108  df-pws 16110  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-mhm 17335  df-submnd 17336  df-grp 17425  df-minusg 17426  df-sbg 17427  df-subg 17591  df-ghm 17658  df-cntz 17750  df-cmn 18195  df-abl 18196  df-mgp 18490  df-ur 18502  df-ring 18549  df-cring 18550  df-oppr 18623  df-dvdsr 18641  df-unit 18642  df-invr 18672  df-dvr 18683  df-rnghom 18715  df-drng 18749  df-field 18750  df-subrg 18778  df-abv 18817  df-staf 18845  df-srng 18846  df-lmod 18865  df-lss 18933  df-lmhm 19022  df-lvec 19103  df-sra 19172  df-rgmod 19173  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-cnfld 19747  df-refld 19951  df-phl 19971  df-dsmm 20076  df-frlm 20091  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-xms 22125  df-ms 22126  df-nm 22387  df-ngp 22388  df-tng 22389  df-nrg 22390  df-nlm 22391  df-clm 22863  df-cph 22968  df-tch 22969  df-rrx 23173
This theorem is referenced by:  rrxngp  40502
  Copyright terms: Public domain W3C validator