Users' Mathboxes Mathbox for Kunhao Zheng < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  amgmwlem Structured version   Visualization version   Unicode version

Theorem amgmwlem 42548
Description: Weighted version of amgmlem 24716. (Contributed by Kunhao Zheng, 19-Jun-2021.)
Hypotheses
Ref Expression
amgmwlem.0  |-  M  =  (mulGrp ` fld )
amgmwlem.1  |-  ( ph  ->  A  e.  Fin )
amgmwlem.2  |-  ( ph  ->  A  =/=  (/) )
amgmwlem.3  |-  ( ph  ->  F : A --> RR+ )
amgmwlem.4  |-  ( ph  ->  W : A --> RR+ )
amgmwlem.5  |-  ( ph  ->  (fld 
gsumg  W )  =  1 )
Assertion
Ref Expression
amgmwlem  |-  ( ph  ->  ( M  gsumg  ( F  oF  ^c  W ) )  <_  (fld  gsumg  ( F  oF  x.  W ) ) )

Proof of Theorem amgmwlem
Dummy variables  x  k  a  b  s  u  v  y  w  t are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 amgmwlem.1 . . . . . . . 8  |-  ( ph  ->  A  e.  Fin )
2 amgmwlem.3 . . . . . . . . . . . 12  |-  ( ph  ->  F : A --> RR+ )
32ffvelrnda 6359 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  A )  ->  ( F `  k )  e.  RR+ )
4 amgmwlem.4 . . . . . . . . . . . . 13  |-  ( ph  ->  W : A --> RR+ )
54ffvelrnda 6359 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  A )  ->  ( W `  k )  e.  RR+ )
65rpred 11872 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  A )  ->  ( W `  k )  e.  RR )
73, 6rpcxpcld 24476 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  A )  ->  (
( F `  k
)  ^c  ( W `  k ) )  e.  RR+ )
87relogcld 24369 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  A )  ->  ( log `  ( ( F `
 k )  ^c  ( W `  k ) ) )  e.  RR )
98recnd 10068 . . . . . . . 8  |-  ( (
ph  /\  k  e.  A )  ->  ( log `  ( ( F `
 k )  ^c  ( W `  k ) ) )  e.  CC )
101, 9gsumfsum 19813 . . . . . . 7  |-  ( ph  ->  (fld 
gsumg  ( k  e.  A  |->  ( log `  (
( F `  k
)  ^c  ( W `  k ) ) ) ) )  =  sum_ k  e.  A  ( log `  ( ( F `  k )  ^c  ( W `
 k ) ) ) )
119negnegd 10383 . . . . . . . 8  |-  ( (
ph  /\  k  e.  A )  ->  -u -u ( log `  ( ( F `
 k )  ^c  ( W `  k ) ) )  =  ( log `  (
( F `  k
)  ^c  ( W `  k ) ) ) )
1211sumeq2dv 14433 . . . . . . 7  |-  ( ph  -> 
sum_ k  e.  A  -u -u ( log `  (
( F `  k
)  ^c  ( W `  k ) ) )  =  sum_ k  e.  A  ( log `  ( ( F `
 k )  ^c  ( W `  k ) ) ) )
138renegcld 10457 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  A )  ->  -u ( log `  ( ( F `
 k )  ^c  ( W `  k ) ) )  e.  RR )
1413recnd 10068 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  A )  ->  -u ( log `  ( ( F `
 k )  ^c  ( W `  k ) ) )  e.  CC )
151, 14fsumneg 14519 . . . . . . . 8  |-  ( ph  -> 
sum_ k  e.  A  -u -u ( log `  (
( F `  k
)  ^c  ( W `  k ) ) )  =  -u sum_ k  e.  A  -u ( log `  ( ( F `  k )  ^c  ( W `
 k ) ) ) )
163, 6logcxpd 24477 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  A )  ->  ( log `  ( ( F `
 k )  ^c  ( W `  k ) ) )  =  ( ( W `
 k )  x.  ( log `  ( F `  k )
) ) )
1716negeqd 10275 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  A )  ->  -u ( log `  ( ( F `
 k )  ^c  ( W `  k ) ) )  =  -u ( ( W `
 k )  x.  ( log `  ( F `  k )
) ) )
1817sumeq2dv 14433 . . . . . . . . 9  |-  ( ph  -> 
sum_ k  e.  A  -u ( log `  (
( F `  k
)  ^c  ( W `  k ) ) )  =  sum_ k  e.  A  -u (
( W `  k
)  x.  ( log `  ( F `  k
) ) ) )
1918negeqd 10275 . . . . . . . 8  |-  ( ph  -> 
-u sum_ k  e.  A  -u ( log `  (
( F `  k
)  ^c  ( W `  k ) ) )  =  -u sum_ k  e.  A  -u ( ( W `  k )  x.  ( log `  ( F `  k ) ) ) )
205rpcnd 11874 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  A )  ->  ( W `  k )  e.  CC )
213relogcld 24369 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  A )  ->  ( log `  ( F `  k ) )  e.  RR )
2221recnd 10068 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  A )  ->  ( log `  ( F `  k ) )  e.  CC )
2320, 22mulneg2d 10484 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  A )  ->  (
( W `  k
)  x.  -u ( log `  ( F `  k ) ) )  =  -u ( ( W `
 k )  x.  ( log `  ( F `  k )
) ) )
2423eqcomd 2628 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  A )  ->  -u (
( W `  k
)  x.  ( log `  ( F `  k
) ) )  =  ( ( W `  k )  x.  -u ( log `  ( F `  k ) ) ) )
2524sumeq2dv 14433 . . . . . . . . 9  |-  ( ph  -> 
sum_ k  e.  A  -u ( ( W `  k )  x.  ( log `  ( F `  k ) ) )  =  sum_ k  e.  A  ( ( W `  k )  x.  -u ( log `  ( F `  k ) ) ) )
2625negeqd 10275 . . . . . . . 8  |-  ( ph  -> 
-u sum_ k  e.  A  -u ( ( W `  k )  x.  ( log `  ( F `  k ) ) )  =  -u sum_ k  e.  A  ( ( W `  k )  x.  -u ( log `  ( F `  k ) ) ) )
2715, 19, 263eqtrd 2660 . . . . . . 7  |-  ( ph  -> 
sum_ k  e.  A  -u -u ( log `  (
( F `  k
)  ^c  ( W `  k ) ) )  =  -u sum_ k  e.  A  ( ( W `  k
)  x.  -u ( log `  ( F `  k ) ) ) )
2810, 12, 273eqtr2rd 2663 . . . . . 6  |-  ( ph  -> 
-u sum_ k  e.  A  ( ( W `  k )  x.  -u ( log `  ( F `  k ) ) )  =  (fld 
gsumg  ( k  e.  A  |->  ( log `  (
( F `  k
)  ^c  ( W `  k ) ) ) ) ) )
29 negex 10279 . . . . . . . . . . 11  |-  -u ( log `  ( F `  k ) )  e. 
_V
3029a1i 11 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  A )  ->  -u ( log `  ( F `  k ) )  e. 
_V )
314feqmptd 6249 . . . . . . . . . 10  |-  ( ph  ->  W  =  ( k  e.  A  |->  ( W `
 k ) ) )
32 eqidd 2623 . . . . . . . . . 10  |-  ( ph  ->  ( k  e.  A  |-> 
-u ( log `  ( F `  k )
) )  =  ( k  e.  A  |->  -u ( log `  ( F `
 k ) ) ) )
331, 5, 30, 31, 32offval2 6914 . . . . . . . . 9  |-  ( ph  ->  ( W  oF  x.  ( k  e.  A  |->  -u ( log `  ( F `  k )
) ) )  =  ( k  e.  A  |->  ( ( W `  k )  x.  -u ( log `  ( F `  k ) ) ) ) )
3433oveq2d 6666 . . . . . . . 8  |-  ( ph  ->  (fld 
gsumg  ( W  oF  x.  ( k  e.  A  |-> 
-u ( log `  ( F `  k )
) ) ) )  =  (fld 
gsumg  ( k  e.  A  |->  ( ( W `  k )  x.  -u ( log `  ( F `  k ) ) ) ) ) )
3522negcld 10379 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  A )  ->  -u ( log `  ( F `  k ) )  e.  CC )
3620, 35mulcld 10060 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  A )  ->  (
( W `  k
)  x.  -u ( log `  ( F `  k ) ) )  e.  CC )
371, 36gsumfsum 19813 . . . . . . . 8  |-  ( ph  ->  (fld 
gsumg  ( k  e.  A  |->  ( ( W `  k )  x.  -u ( log `  ( F `  k ) ) ) ) )  =  sum_ k  e.  A  (
( W `  k
)  x.  -u ( log `  ( F `  k ) ) ) )
3834, 37eqtrd 2656 . . . . . . 7  |-  ( ph  ->  (fld 
gsumg  ( W  oF  x.  ( k  e.  A  |-> 
-u ( log `  ( F `  k )
) ) ) )  =  sum_ k  e.  A  ( ( W `  k )  x.  -u ( log `  ( F `  k ) ) ) )
3938negeqd 10275 . . . . . 6  |-  ( ph  -> 
-u (fld 
gsumg  ( W  oF  x.  ( k  e.  A  |-> 
-u ( log `  ( F `  k )
) ) ) )  =  -u sum_ k  e.  A  ( ( W `  k )  x.  -u ( log `  ( F `  k ) ) ) )
40 relogf1o 24313 . . . . . . . . . 10  |-  ( log  |`  RR+ ) : RR+ -1-1-onto-> RR
41 f1of 6137 . . . . . . . . . 10  |-  ( ( log  |`  RR+ ) :
RR+
-1-1-onto-> RR  ->  ( log  |`  RR+ ) : RR+ --> RR )
4240, 41ax-mp 5 . . . . . . . . 9  |-  ( log  |`  RR+ ) : RR+ --> RR
43 rpre 11839 . . . . . . . . . . . . 13  |-  ( y  e.  RR+  ->  y  e.  RR )
4443anim2i 593 . . . . . . . . . . . 12  |-  ( ( x  e.  RR+  /\  y  e.  RR+ )  ->  (
x  e.  RR+  /\  y  e.  RR ) )
4544adantl 482 . . . . . . . . . . 11  |-  ( (
ph  /\  ( x  e.  RR+  /\  y  e.  RR+ ) )  ->  (
x  e.  RR+  /\  y  e.  RR ) )
46 rpcxpcl 24422 . . . . . . . . . . 11  |-  ( ( x  e.  RR+  /\  y  e.  RR )  ->  (
x  ^c  y )  e.  RR+ )
4745, 46syl 17 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  RR+  /\  y  e.  RR+ ) )  ->  (
x  ^c  y )  e.  RR+ )
48 inidm 3822 . . . . . . . . . 10  |-  ( A  i^i  A )  =  A
4947, 2, 4, 1, 1, 48off 6912 . . . . . . . . 9  |-  ( ph  ->  ( F  oF  ^c  W ) : A --> RR+ )
50 fcompt 6400 . . . . . . . . 9  |-  ( ( ( log  |`  RR+ ) : RR+ --> RR  /\  ( F  oF  ^c  W ) : A --> RR+ )  ->  ( ( log  |`  RR+ )  o.  ( F  oF  ^c  W ) )  =  ( k  e.  A  |->  ( ( log  |`  RR+ ) `  ( ( F  oF  ^c  W ) `
 k ) ) ) )
5142, 49, 50sylancr 695 . . . . . . . 8  |-  ( ph  ->  ( ( log  |`  RR+ )  o.  ( F  oF  ^c  W ) )  =  ( k  e.  A  |->  ( ( log  |`  RR+ ) `  ( ( F  oF  ^c  W ) `
 k ) ) ) )
5249ffvelrnda 6359 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  A )  ->  (
( F  oF  ^c  W ) `
 k )  e.  RR+ )
53 fvres 6207 . . . . . . . . . . 11  |-  ( ( ( F  oF  ^c  W ) `
 k )  e.  RR+  ->  ( ( log  |`  RR+ ) `  (
( F  oF  ^c  W ) `
 k ) )  =  ( log `  (
( F  oF  ^c  W ) `
 k ) ) )
5452, 53syl 17 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  A )  ->  (
( log  |`  RR+ ) `  ( ( F  oF  ^c  W ) `
 k ) )  =  ( log `  (
( F  oF  ^c  W ) `
 k ) ) )
552ffnd 6046 . . . . . . . . . . . 12  |-  ( ph  ->  F  Fn  A )
564ffnd 6046 . . . . . . . . . . . 12  |-  ( ph  ->  W  Fn  A )
57 eqidd 2623 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  A )  ->  ( F `  k )  =  ( F `  k ) )
58 eqidd 2623 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  A )  ->  ( W `  k )  =  ( W `  k ) )
5955, 56, 1, 1, 48, 57, 58ofval 6906 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  A )  ->  (
( F  oF  ^c  W ) `
 k )  =  ( ( F `  k )  ^c 
( W `  k
) ) )
6059fveq2d 6195 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  A )  ->  ( log `  ( ( F  oF  ^c  W ) `  k
) )  =  ( log `  ( ( F `  k )  ^c  ( W `
 k ) ) ) )
6154, 60eqtrd 2656 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  A )  ->  (
( log  |`  RR+ ) `  ( ( F  oF  ^c  W ) `
 k ) )  =  ( log `  (
( F `  k
)  ^c  ( W `  k ) ) ) )
6261mpteq2dva 4744 . . . . . . . 8  |-  ( ph  ->  ( k  e.  A  |->  ( ( log  |`  RR+ ) `  ( ( F  oF  ^c  W ) `
 k ) ) )  =  ( k  e.  A  |->  ( log `  ( ( F `  k )  ^c 
( W `  k
) ) ) ) )
6351, 62eqtrd 2656 . . . . . . 7  |-  ( ph  ->  ( ( log  |`  RR+ )  o.  ( F  oF  ^c  W ) )  =  ( k  e.  A  |->  ( log `  ( ( F `  k )  ^c 
( W `  k
) ) ) ) )
6463oveq2d 6666 . . . . . 6  |-  ( ph  ->  (fld 
gsumg  ( ( log  |`  RR+ )  o.  ( F  oF  ^c  W ) ) )  =  (fld  gsumg  ( k  e.  A  |->  ( log `  ( ( F `  k )  ^c 
( W `  k
) ) ) ) ) )
6528, 39, 643eqtr4d 2666 . . . . 5  |-  ( ph  -> 
-u (fld 
gsumg  ( W  oF  x.  ( k  e.  A  |-> 
-u ( log `  ( F `  k )
) ) ) )  =  (fld 
gsumg  ( ( log  |`  RR+ )  o.  ( F  oF  ^c  W ) ) ) )
66 amgmwlem.0 . . . . . . . . . . . . 13  |-  M  =  (mulGrp ` fld )
6766oveq1i 6660 . . . . . . . . . . . 12  |-  ( Ms  ( CC  \  { 0 } ) )  =  ( (mulGrp ` fld )s  ( CC  \  { 0 } ) )
6867rpmsubg 19810 . . . . . . . . . . 11  |-  RR+  e.  (SubGrp `  ( Ms  ( CC 
\  { 0 } ) ) )
69 subgsubm 17616 . . . . . . . . . . 11  |-  ( RR+  e.  (SubGrp `  ( Ms  ( CC  \  { 0 } ) ) )  ->  RR+ 
e.  (SubMnd `  ( Ms  ( CC  \  { 0 } ) ) ) )
7068, 69ax-mp 5 . . . . . . . . . 10  |-  RR+  e.  (SubMnd `  ( Ms  ( CC 
\  { 0 } ) ) )
71 cnring 19768 . . . . . . . . . . 11  |-fld  e.  Ring
72 cnfldbas 19750 . . . . . . . . . . . . 13  |-  CC  =  ( Base ` fld )
73 cnfld0 19770 . . . . . . . . . . . . 13  |-  0  =  ( 0g ` fld )
74 cndrng 19775 . . . . . . . . . . . . 13  |-fld  e.  DivRing
7572, 73, 74drngui 18753 . . . . . . . . . . . 12  |-  ( CC 
\  { 0 } )  =  (Unit ` fld )
7675, 66unitsubm 18670 . . . . . . . . . . 11  |-  (fld  e.  Ring  -> 
( CC  \  {
0 } )  e.  (SubMnd `  M )
)
77 eqid 2622 . . . . . . . . . . . 12  |-  ( Ms  ( CC  \  { 0 } ) )  =  ( Ms  ( CC  \  { 0 } ) )
7877subsubm 17357 . . . . . . . . . . 11  |-  ( ( CC  \  { 0 } )  e.  (SubMnd `  M )  ->  ( RR+  e.  (SubMnd `  ( Ms  ( CC  \  { 0 } ) ) )  <-> 
( RR+  e.  (SubMnd `  M )  /\  RR+  C_  ( CC  \  { 0 } ) ) ) )
7971, 76, 78mp2b 10 . . . . . . . . . 10  |-  ( RR+  e.  (SubMnd `  ( Ms  ( CC  \  { 0 } ) ) )  <->  ( RR+  e.  (SubMnd `  M )  /\  RR+  C_  ( CC  \  { 0 } ) ) )
8070, 79mpbi 220 . . . . . . . . 9  |-  ( RR+  e.  (SubMnd `  M )  /\  RR+  C_  ( CC  \  { 0 } ) )
8180simpli 474 . . . . . . . 8  |-  RR+  e.  (SubMnd `  M )
82 eqid 2622 . . . . . . . . 9  |-  ( Ms  RR+ )  =  ( Ms  RR+ )
8382submbas 17355 . . . . . . . 8  |-  ( RR+  e.  (SubMnd `  M )  -> 
RR+  =  ( Base `  ( Ms  RR+ ) ) )
8481, 83ax-mp 5 . . . . . . 7  |-  RR+  =  ( Base `  ( Ms  RR+ )
)
85 cnfld1 19771 . . . . . . . . 9  |-  1  =  ( 1r ` fld )
8666, 85ringidval 18503 . . . . . . . 8  |-  1  =  ( 0g `  M )
87 eqid 2622 . . . . . . . . . 10  |-  ( 0g
`  M )  =  ( 0g `  M
)
8882, 87subm0 17356 . . . . . . . . 9  |-  ( RR+  e.  (SubMnd `  M )  ->  ( 0g `  M
)  =  ( 0g
`  ( Ms  RR+ )
) )
8981, 88ax-mp 5 . . . . . . . 8  |-  ( 0g
`  M )  =  ( 0g `  ( Ms  RR+ ) )
9086, 89eqtri 2644 . . . . . . 7  |-  1  =  ( 0g `  ( Ms  RR+ ) )
91 cncrng 19767 . . . . . . . . 9  |-fld  e.  CRing
9266crngmgp 18555 . . . . . . . . 9  |-  (fld  e.  CRing  ->  M  e. CMnd )
9391, 92mp1i 13 . . . . . . . 8  |-  ( ph  ->  M  e. CMnd )
9482submmnd 17354 . . . . . . . . 9  |-  ( RR+  e.  (SubMnd `  M )  ->  ( Ms  RR+ )  e.  Mnd )
9581, 94mp1i 13 . . . . . . . 8  |-  ( ph  ->  ( Ms  RR+ )  e.  Mnd )
9682subcmn 18242 . . . . . . . 8  |-  ( ( M  e. CMnd  /\  ( Ms  RR+ )  e.  Mnd )  ->  ( Ms  RR+ )  e. CMnd )
9793, 95, 96syl2anc 693 . . . . . . 7  |-  ( ph  ->  ( Ms  RR+ )  e. CMnd )
98 resubdrg 19954 . . . . . . . . . 10  |-  ( RR  e.  (SubRing ` fld )  /\ RRfld  e.  DivRing )
9998simpli 474 . . . . . . . . 9  |-  RR  e.  (SubRing ` fld )
100 df-refld 19951 . . . . . . . . . 10  |- RRfld  =  (flds  RR )
101100subrgring 18783 . . . . . . . . 9  |-  ( RR  e.  (SubRing ` fld )  -> RRfld  e.  Ring )
10299, 101ax-mp 5 . . . . . . . 8  |- RRfld  e.  Ring
103 ringmnd 18556 . . . . . . . 8  |-  (RRfld  e.  Ring 
-> RRfld  e.  Mnd )
104102, 103mp1i 13 . . . . . . 7  |-  ( ph  -> RRfld 
e.  Mnd )
10566oveq1i 6660 . . . . . . . . . 10  |-  ( Ms  RR+ )  =  ( (mulGrp ` fld )s  RR+ )
106105reloggim 24345 . . . . . . . . 9  |-  ( log  |`  RR+ )  e.  ( ( Ms  RR+ ) GrpIso RRfld )
107 gimghm 17706 . . . . . . . . 9  |-  ( ( log  |`  RR+ )  e.  ( ( Ms  RR+ ) GrpIso RRfld )  ->  ( log  |`  RR+ )  e.  ( ( Ms  RR+ )  GrpHom RRfld ) )
108106, 107ax-mp 5 . . . . . . . 8  |-  ( log  |`  RR+ )  e.  ( ( Ms  RR+ )  GrpHom RRfld )
109 ghmmhm 17670 . . . . . . . 8  |-  ( ( log  |`  RR+ )  e.  ( ( Ms  RR+ )  GrpHom RRfld )  ->  ( log  |`  RR+ )  e.  (
( Ms  RR+ ) MndHom RRfld ) )
110108, 109mp1i 13 . . . . . . 7  |-  ( ph  ->  ( log  |`  RR+ )  e.  ( ( Ms  RR+ ) MndHom RRfld ) )
111 1red 10055 . . . . . . . 8  |-  ( ph  ->  1  e.  RR )
11249, 1, 111fdmfifsupp 8285 . . . . . . 7  |-  ( ph  ->  ( F  oF  ^c  W ) finSupp 
1 )
11384, 90, 97, 104, 1, 110, 49, 112gsummhm 18338 . . . . . 6  |-  ( ph  ->  (RRfld  gsumg  ( ( log  |`  RR+ )  o.  ( F  oF  ^c  W ) ) )  =  ( ( log  |`  RR+ ) `  ( ( Ms  RR+ )  gsumg  ( F  oF  ^c  W ) ) ) )
114 subrgsubg 18786 . . . . . . . . . 10  |-  ( RR  e.  (SubRing ` fld )  ->  RR  e.  (SubGrp ` fld ) )
11599, 114ax-mp 5 . . . . . . . . 9  |-  RR  e.  (SubGrp ` fld )
116 subgsubm 17616 . . . . . . . . 9  |-  ( RR  e.  (SubGrp ` fld )  ->  RR  e.  (SubMnd ` fld ) )
117115, 116ax-mp 5 . . . . . . . 8  |-  RR  e.  (SubMnd ` fld )
118117a1i 11 . . . . . . 7  |-  ( ph  ->  RR  e.  (SubMnd ` fld )
)
11940, 41mp1i 13 . . . . . . . 8  |-  ( ph  ->  ( log  |`  RR+ ) : RR+ --> RR )
120 fco 6058 . . . . . . . 8  |-  ( ( ( log  |`  RR+ ) : RR+ --> RR  /\  ( F  oF  ^c  W ) : A --> RR+ )  ->  ( ( log  |`  RR+ )  o.  ( F  oF  ^c  W ) ) : A --> RR )
121119, 49, 120syl2anc 693 . . . . . . 7  |-  ( ph  ->  ( ( log  |`  RR+ )  o.  ( F  oF  ^c  W ) ) : A --> RR )
1221, 118, 121, 100gsumsubm 17373 . . . . . 6  |-  ( ph  ->  (fld 
gsumg  ( ( log  |`  RR+ )  o.  ( F  oF  ^c  W ) ) )  =  (RRfld  gsumg  ( ( log  |`  RR+ )  o.  ( F  oF  ^c  W ) ) ) )
12381a1i 11 . . . . . . . 8  |-  ( ph  -> 
RR+  e.  (SubMnd `  M
) )
1241, 123, 49, 82gsumsubm 17373 . . . . . . 7  |-  ( ph  ->  ( M  gsumg  ( F  oF  ^c  W ) )  =  ( ( Ms 
RR+ )  gsumg  ( F  oF  ^c  W ) ) )
125124fveq2d 6195 . . . . . 6  |-  ( ph  ->  ( ( log  |`  RR+ ) `  ( M  gsumg  ( F  oF  ^c  W ) ) )  =  ( ( log  |`  RR+ ) `  ( ( Ms  RR+ )  gsumg  ( F  oF  ^c  W ) ) ) )
126113, 122, 1253eqtr4d 2666 . . . . 5  |-  ( ph  ->  (fld 
gsumg  ( ( log  |`  RR+ )  o.  ( F  oF  ^c  W ) ) )  =  ( ( log  |`  RR+ ) `  ( M  gsumg  ( F  oF  ^c  W ) ) ) )
12786, 93, 1, 123, 49, 112gsumsubmcl 18319 . . . . . 6  |-  ( ph  ->  ( M  gsumg  ( F  oF  ^c  W ) )  e.  RR+ )
128 fvres 6207 . . . . . 6  |-  ( ( M  gsumg  ( F  oF  ^c  W ) )  e.  RR+  ->  ( ( log  |`  RR+ ) `  ( M  gsumg  ( F  oF  ^c  W ) ) )  =  ( log `  ( M 
gsumg  ( F  oF  ^c  W )
) ) )
129127, 128syl 17 . . . . 5  |-  ( ph  ->  ( ( log  |`  RR+ ) `  ( M  gsumg  ( F  oF  ^c  W ) ) )  =  ( log `  ( M 
gsumg  ( F  oF  ^c  W )
) ) )
13065, 126, 1293eqtrd 2660 . . . 4  |-  ( ph  -> 
-u (fld 
gsumg  ( W  oF  x.  ( k  e.  A  |-> 
-u ( log `  ( F `  k )
) ) ) )  =  ( log `  ( M  gsumg  ( F  oF  ^c  W ) ) ) )
131 simprl 794 . . . . . . . . . . 11  |-  ( (
ph  /\  ( x  e.  RR+  /\  y  e.  RR+ ) )  ->  x  e.  RR+ )
132131rpcnd 11874 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  RR+  /\  y  e.  RR+ ) )  ->  x  e.  CC )
133 simprr 796 . . . . . . . . . . 11  |-  ( (
ph  /\  ( x  e.  RR+  /\  y  e.  RR+ ) )  ->  y  e.  RR+ )
134133rpcnd 11874 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  RR+  /\  y  e.  RR+ ) )  ->  y  e.  CC )
135132, 134mulcomd 10061 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  RR+  /\  y  e.  RR+ ) )  ->  (
x  x.  y )  =  ( y  x.  x ) )
1361, 4, 2, 135caofcom 6929 . . . . . . . 8  |-  ( ph  ->  ( W  oF  x.  F )  =  ( F  oF  x.  W ) )
137136oveq2d 6666 . . . . . . 7  |-  ( ph  ->  (fld 
gsumg  ( W  oF  x.  F ) )  =  (fld 
gsumg  ( F  oF  x.  W ) ) )
1382feqmptd 6249 . . . . . . . . . . 11  |-  ( ph  ->  F  =  ( k  e.  A  |->  ( F `
 k ) ) )
1391, 5, 3, 31, 138offval2 6914 . . . . . . . . . 10  |-  ( ph  ->  ( W  oF  x.  F )  =  ( k  e.  A  |->  ( ( W `  k )  x.  ( F `  k )
) ) )
140139oveq2d 6666 . . . . . . . . 9  |-  ( ph  ->  (fld 
gsumg  ( W  oF  x.  F ) )  =  (fld 
gsumg  ( k  e.  A  |->  ( ( W `  k )  x.  ( F `  k )
) ) ) )
1415, 3rpmulcld 11888 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  A )  ->  (
( W `  k
)  x.  ( F `
 k ) )  e.  RR+ )
142141rpcnd 11874 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  A )  ->  (
( W `  k
)  x.  ( F `
 k ) )  e.  CC )
1431, 142gsumfsum 19813 . . . . . . . . 9  |-  ( ph  ->  (fld 
gsumg  ( k  e.  A  |->  ( ( W `  k )  x.  ( F `  k )
) ) )  = 
sum_ k  e.  A  ( ( W `  k )  x.  ( F `  k )
) )
144140, 143eqtrd 2656 . . . . . . . 8  |-  ( ph  ->  (fld 
gsumg  ( W  oF  x.  F ) )  = 
sum_ k  e.  A  ( ( W `  k )  x.  ( F `  k )
) )
145 amgmwlem.2 . . . . . . . . 9  |-  ( ph  ->  A  =/=  (/) )
1461, 145, 141fsumrpcl 14468 . . . . . . . 8  |-  ( ph  -> 
sum_ k  e.  A  ( ( W `  k )  x.  ( F `  k )
)  e.  RR+ )
147144, 146eqeltrd 2701 . . . . . . 7  |-  ( ph  ->  (fld 
gsumg  ( W  oF  x.  F ) )  e.  RR+ )
148137, 147eqeltrrd 2702 . . . . . 6  |-  ( ph  ->  (fld 
gsumg  ( F  oF  x.  W ) )  e.  RR+ )
149148relogcld 24369 . . . . 5  |-  ( ph  ->  ( log `  (fld  gsumg  ( F  oF  x.  W ) ) )  e.  RR )
150 ringcmn 18581 . . . . . . 7  |-  (fld  e.  Ring  ->fld  e. CMnd )
15171, 150mp1i 13 . . . . . 6  |-  ( ph  ->fld  e. CMnd
)
152 remulcl 10021 . . . . . . . 8  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  ( x  x.  y
)  e.  RR )
153152adantl 482 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  RR  /\  y  e.  RR ) )  -> 
( x  x.  y
)  e.  RR )
154 rpssre 11843 . . . . . . . 8  |-  RR+  C_  RR
155 fss 6056 . . . . . . . 8  |-  ( ( W : A --> RR+  /\  RR+  C_  RR )  ->  W : A --> RR )
1564, 154, 155sylancl 694 . . . . . . 7  |-  ( ph  ->  W : A --> RR )
15721renegcld 10457 . . . . . . . 8  |-  ( (
ph  /\  k  e.  A )  ->  -u ( log `  ( F `  k ) )  e.  RR )
158 eqid 2622 . . . . . . . 8  |-  ( k  e.  A  |->  -u ( log `  ( F `  k ) ) )  =  ( k  e.  A  |->  -u ( log `  ( F `  k )
) )
159157, 158fmptd 6385 . . . . . . 7  |-  ( ph  ->  ( k  e.  A  |-> 
-u ( log `  ( F `  k )
) ) : A --> RR )
160153, 156, 159, 1, 1, 48off 6912 . . . . . 6  |-  ( ph  ->  ( W  oF  x.  ( k  e.  A  |->  -u ( log `  ( F `  k )
) ) ) : A --> RR )
161 0red 10041 . . . . . . 7  |-  ( ph  ->  0  e.  RR )
162160, 1, 161fdmfifsupp 8285 . . . . . 6  |-  ( ph  ->  ( W  oF  x.  ( k  e.  A  |->  -u ( log `  ( F `  k )
) ) ) finSupp  0
)
16373, 151, 1, 118, 160, 162gsumsubmcl 18319 . . . . 5  |-  ( ph  ->  (fld 
gsumg  ( W  oF  x.  ( k  e.  A  |-> 
-u ( log `  ( F `  k )
) ) ) )  e.  RR )
164154a1i 11 . . . . . . . 8  |-  ( ph  -> 
RR+  C_  RR )
165 simpr 477 . . . . . . . . . . 11  |-  ( (
ph  /\  w  e.  RR+ )  ->  w  e.  RR+ )
166165relogcld 24369 . . . . . . . . . 10  |-  ( (
ph  /\  w  e.  RR+ )  ->  ( log `  w )  e.  RR )
167166renegcld 10457 . . . . . . . . 9  |-  ( (
ph  /\  w  e.  RR+ )  ->  -u ( log `  w )  e.  RR )
168 eqid 2622 . . . . . . . . 9  |-  ( w  e.  RR+  |->  -u ( log `  w ) )  =  ( w  e.  RR+  |->  -u ( log `  w
) )
169167, 168fmptd 6385 . . . . . . . 8  |-  ( ph  ->  ( w  e.  RR+  |->  -u ( log `  w
) ) : RR+ --> RR )
170 simpl 473 . . . . . . . . . . . 12  |-  ( ( a  e.  RR+  /\  b  e.  RR+ )  ->  a  e.  RR+ )
171 ioorp 12251 . . . . . . . . . . . 12  |-  ( 0 (,) +oo )  = 
RR+
172170, 171syl6eleqr 2712 . . . . . . . . . . 11  |-  ( ( a  e.  RR+  /\  b  e.  RR+ )  ->  a  e.  ( 0 (,) +oo ) )
173 simpr 477 . . . . . . . . . . . 12  |-  ( ( a  e.  RR+  /\  b  e.  RR+ )  ->  b  e.  RR+ )
174173, 171syl6eleqr 2712 . . . . . . . . . . 11  |-  ( ( a  e.  RR+  /\  b  e.  RR+ )  ->  b  e.  ( 0 (,) +oo ) )
175 iccssioo2 12246 . . . . . . . . . . 11  |-  ( ( a  e.  ( 0 (,) +oo )  /\  b  e.  ( 0 (,) +oo ) )  ->  ( a [,] b )  C_  (
0 (,) +oo )
)
176172, 174, 175syl2anc 693 . . . . . . . . . 10  |-  ( ( a  e.  RR+  /\  b  e.  RR+ )  ->  (
a [,] b ) 
C_  ( 0 (,) +oo ) )
177176, 171syl6sseq 3651 . . . . . . . . 9  |-  ( ( a  e.  RR+  /\  b  e.  RR+ )  ->  (
a [,] b ) 
C_  RR+ )
178177adantl 482 . . . . . . . 8  |-  ( (
ph  /\  ( a  e.  RR+  /\  b  e.  RR+ ) )  ->  (
a [,] b ) 
C_  RR+ )
179 ioossico 12262 . . . . . . . . . 10  |-  ( 0 (,) +oo )  C_  ( 0 [,) +oo )
180171, 179eqsstr3i 3636 . . . . . . . . 9  |-  RR+  C_  (
0 [,) +oo )
181 fss 6056 . . . . . . . . 9  |-  ( ( W : A --> RR+  /\  RR+  C_  (
0 [,) +oo )
)  ->  W : A
--> ( 0 [,) +oo ) )
1824, 180, 181sylancl 694 . . . . . . . 8  |-  ( ph  ->  W : A --> ( 0 [,) +oo ) )
183 0lt1 10550 . . . . . . . . 9  |-  0  <  1
184 amgmwlem.5 . . . . . . . . 9  |-  ( ph  ->  (fld 
gsumg  W )  =  1 )
185183, 184syl5breqr 4691 . . . . . . . 8  |-  ( ph  ->  0  <  (fld  gsumg  W ) )
186 logccv 24409 . . . . . . . . . . . 12  |-  ( ( ( x  e.  RR+  /\  y  e.  RR+  /\  x  <  y )  /\  t  e.  ( 0 (,) 1
) )  ->  (
( t  x.  ( log `  x ) )  +  ( ( 1  -  t )  x.  ( log `  y
) ) )  < 
( log `  (
( t  x.  x
)  +  ( ( 1  -  t )  x.  y ) ) ) )
1871863adant1 1079 . . . . . . . . . . 11  |-  ( (
ph  /\  ( x  e.  RR+  /\  y  e.  RR+  /\  x  <  y
)  /\  t  e.  ( 0 (,) 1
) )  ->  (
( t  x.  ( log `  x ) )  +  ( ( 1  -  t )  x.  ( log `  y
) ) )  < 
( log `  (
( t  x.  x
)  +  ( ( 1  -  t )  x.  y ) ) ) )
188 elioore 12205 . . . . . . . . . . . . . . 15  |-  ( t  e.  ( 0 (,) 1 )  ->  t  e.  RR )
1891883ad2ant3 1084 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( x  e.  RR+  /\  y  e.  RR+  /\  x  <  y
)  /\  t  e.  ( 0 (,) 1
) )  ->  t  e.  RR )
190 simp21 1094 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( x  e.  RR+  /\  y  e.  RR+  /\  x  <  y
)  /\  t  e.  ( 0 (,) 1
) )  ->  x  e.  RR+ )
191190relogcld 24369 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( x  e.  RR+  /\  y  e.  RR+  /\  x  <  y
)  /\  t  e.  ( 0 (,) 1
) )  ->  ( log `  x )  e.  RR )
192189, 191remulcld 10070 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( x  e.  RR+  /\  y  e.  RR+  /\  x  <  y
)  /\  t  e.  ( 0 (,) 1
) )  ->  (
t  x.  ( log `  x ) )  e.  RR )
193 1red 10055 . . . . . . . . . . . . . . . 16  |-  ( t  e.  ( 0 (,) 1 )  ->  1  e.  RR )
194193, 188resubcld 10458 . . . . . . . . . . . . . . 15  |-  ( t  e.  ( 0 (,) 1 )  ->  (
1  -  t )  e.  RR )
1951943ad2ant3 1084 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( x  e.  RR+  /\  y  e.  RR+  /\  x  <  y
)  /\  t  e.  ( 0 (,) 1
) )  ->  (
1  -  t )  e.  RR )
196 simp22 1095 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( x  e.  RR+  /\  y  e.  RR+  /\  x  <  y
)  /\  t  e.  ( 0 (,) 1
) )  ->  y  e.  RR+ )
197196relogcld 24369 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( x  e.  RR+  /\  y  e.  RR+  /\  x  <  y
)  /\  t  e.  ( 0 (,) 1
) )  ->  ( log `  y )  e.  RR )
198195, 197remulcld 10070 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( x  e.  RR+  /\  y  e.  RR+  /\  x  <  y
)  /\  t  e.  ( 0 (,) 1
) )  ->  (
( 1  -  t
)  x.  ( log `  y ) )  e.  RR )
199192, 198readdcld 10069 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( x  e.  RR+  /\  y  e.  RR+  /\  x  <  y
)  /\  t  e.  ( 0 (,) 1
) )  ->  (
( t  x.  ( log `  x ) )  +  ( ( 1  -  t )  x.  ( log `  y
) ) )  e.  RR )
200 eliooord 12233 . . . . . . . . . . . . . . . . . 18  |-  ( t  e.  ( 0 (,) 1 )  ->  (
0  <  t  /\  t  <  1 ) )
201200simpld 475 . . . . . . . . . . . . . . . . 17  |-  ( t  e.  ( 0 (,) 1 )  ->  0  <  t )
202188, 201elrpd 11869 . . . . . . . . . . . . . . . 16  |-  ( t  e.  ( 0 (,) 1 )  ->  t  e.  RR+ )
2032023ad2ant3 1084 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( x  e.  RR+  /\  y  e.  RR+  /\  x  <  y
)  /\  t  e.  ( 0 (,) 1
) )  ->  t  e.  RR+ )
204203, 190rpmulcld 11888 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( x  e.  RR+  /\  y  e.  RR+  /\  x  <  y
)  /\  t  e.  ( 0 (,) 1
) )  ->  (
t  x.  x )  e.  RR+ )
205 0red 10041 . . . . . . . . . . . . . . . . . 18  |-  ( t  e.  ( 0 (,) 1 )  ->  0  e.  RR )
206200simprd 479 . . . . . . . . . . . . . . . . . . 19  |-  ( t  e.  ( 0 (,) 1 )  ->  t  <  1 )
207 1m0e1 11131 . . . . . . . . . . . . . . . . . . 19  |-  ( 1  -  0 )  =  1
208206, 207syl6breqr 4695 . . . . . . . . . . . . . . . . . 18  |-  ( t  e.  ( 0 (,) 1 )  ->  t  <  ( 1  -  0 ) )
209188, 193, 205, 208ltsub13d 10633 . . . . . . . . . . . . . . . . 17  |-  ( t  e.  ( 0 (,) 1 )  ->  0  <  ( 1  -  t
) )
210194, 209elrpd 11869 . . . . . . . . . . . . . . . 16  |-  ( t  e.  ( 0 (,) 1 )  ->  (
1  -  t )  e.  RR+ )
2112103ad2ant3 1084 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( x  e.  RR+  /\  y  e.  RR+  /\  x  <  y
)  /\  t  e.  ( 0 (,) 1
) )  ->  (
1  -  t )  e.  RR+ )
212211, 196rpmulcld 11888 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( x  e.  RR+  /\  y  e.  RR+  /\  x  <  y
)  /\  t  e.  ( 0 (,) 1
) )  ->  (
( 1  -  t
)  x.  y )  e.  RR+ )
213 rpaddcl 11854 . . . . . . . . . . . . . 14  |-  ( ( ( t  x.  x
)  e.  RR+  /\  (
( 1  -  t
)  x.  y )  e.  RR+ )  ->  (
( t  x.  x
)  +  ( ( 1  -  t )  x.  y ) )  e.  RR+ )
214204, 212, 213syl2anc 693 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( x  e.  RR+  /\  y  e.  RR+  /\  x  <  y
)  /\  t  e.  ( 0 (,) 1
) )  ->  (
( t  x.  x
)  +  ( ( 1  -  t )  x.  y ) )  e.  RR+ )
215214relogcld 24369 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( x  e.  RR+  /\  y  e.  RR+  /\  x  <  y
)  /\  t  e.  ( 0 (,) 1
) )  ->  ( log `  ( ( t  x.  x )  +  ( ( 1  -  t )  x.  y
) ) )  e.  RR )
216199, 215ltnegd 10605 . . . . . . . . . . 11  |-  ( (
ph  /\  ( x  e.  RR+  /\  y  e.  RR+  /\  x  <  y
)  /\  t  e.  ( 0 (,) 1
) )  ->  (
( ( t  x.  ( log `  x
) )  +  ( ( 1  -  t
)  x.  ( log `  y ) ) )  <  ( log `  (
( t  x.  x
)  +  ( ( 1  -  t )  x.  y ) ) )  <->  -u ( log `  (
( t  x.  x
)  +  ( ( 1  -  t )  x.  y ) ) )  <  -u (
( t  x.  ( log `  x ) )  +  ( ( 1  -  t )  x.  ( log `  y
) ) ) ) )
217187, 216mpbid 222 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  RR+  /\  y  e.  RR+  /\  x  <  y
)  /\  t  e.  ( 0 (,) 1
) )  ->  -u ( log `  ( ( t  x.  x )  +  ( ( 1  -  t )  x.  y
) ) )  <  -u ( ( t  x.  ( log `  x
) )  +  ( ( 1  -  t
)  x.  ( log `  y ) ) ) )
218 eqidd 2623 . . . . . . . . . . 11  |-  ( (
ph  /\  ( x  e.  RR+  /\  y  e.  RR+  /\  x  <  y
)  /\  t  e.  ( 0 (,) 1
) )  ->  (
w  e.  RR+  |->  -u ( log `  w ) )  =  ( w  e.  RR+  |->  -u ( log `  w
) ) )
219 fveq2 6191 . . . . . . . . . . . . 13  |-  ( w  =  ( ( t  x.  x )  +  ( ( 1  -  t )  x.  y
) )  ->  ( log `  w )  =  ( log `  (
( t  x.  x
)  +  ( ( 1  -  t )  x.  y ) ) ) )
220219adantl 482 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  y  e.  RR+  /\  x  < 
y )  /\  t  e.  ( 0 (,) 1
) )  /\  w  =  ( ( t  x.  x )  +  ( ( 1  -  t )  x.  y
) ) )  -> 
( log `  w
)  =  ( log `  ( ( t  x.  x )  +  ( ( 1  -  t
)  x.  y ) ) ) )
221220negeqd 10275 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  y  e.  RR+  /\  x  < 
y )  /\  t  e.  ( 0 (,) 1
) )  /\  w  =  ( ( t  x.  x )  +  ( ( 1  -  t )  x.  y
) ) )  ->  -u ( log `  w
)  =  -u ( log `  ( ( t  x.  x )  +  ( ( 1  -  t )  x.  y
) ) ) )
222 negex 10279 . . . . . . . . . . . 12  |-  -u ( log `  ( ( t  x.  x )  +  ( ( 1  -  t )  x.  y
) ) )  e. 
_V
223222a1i 11 . . . . . . . . . . 11  |-  ( (
ph  /\  ( x  e.  RR+  /\  y  e.  RR+  /\  x  <  y
)  /\  t  e.  ( 0 (,) 1
) )  ->  -u ( log `  ( ( t  x.  x )  +  ( ( 1  -  t )  x.  y
) ) )  e. 
_V )
224218, 221, 214, 223fvmptd 6288 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  RR+  /\  y  e.  RR+  /\  x  <  y
)  /\  t  e.  ( 0 (,) 1
) )  ->  (
( w  e.  RR+  |->  -u ( log `  w
) ) `  (
( t  x.  x
)  +  ( ( 1  -  t )  x.  y ) ) )  =  -u ( log `  ( ( t  x.  x )  +  ( ( 1  -  t )  x.  y
) ) ) )
225 fveq2 6191 . . . . . . . . . . . . . . . . 17  |-  ( w  =  x  ->  ( log `  w )  =  ( log `  x
) )
226225negeqd 10275 . . . . . . . . . . . . . . . 16  |-  ( w  =  x  ->  -u ( log `  w )  = 
-u ( log `  x
) )
227 negex 10279 . . . . . . . . . . . . . . . 16  |-  -u ( log `  w )  e. 
_V
228226, 168, 227fvmpt3i 6287 . . . . . . . . . . . . . . 15  |-  ( x  e.  RR+  ->  ( ( w  e.  RR+  |->  -u ( log `  w ) ) `
 x )  = 
-u ( log `  x
) )
229190, 228syl 17 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( x  e.  RR+  /\  y  e.  RR+  /\  x  <  y
)  /\  t  e.  ( 0 (,) 1
) )  ->  (
( w  e.  RR+  |->  -u ( log `  w
) ) `  x
)  =  -u ( log `  x ) )
230229oveq2d 6666 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( x  e.  RR+  /\  y  e.  RR+  /\  x  <  y
)  /\  t  e.  ( 0 (,) 1
) )  ->  (
t  x.  ( ( w  e.  RR+  |->  -u ( log `  w ) ) `
 x ) )  =  ( t  x.  -u ( log `  x
) ) )
231189recnd 10068 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( x  e.  RR+  /\  y  e.  RR+  /\  x  <  y
)  /\  t  e.  ( 0 (,) 1
) )  ->  t  e.  CC )
232191recnd 10068 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( x  e.  RR+  /\  y  e.  RR+  /\  x  <  y
)  /\  t  e.  ( 0 (,) 1
) )  ->  ( log `  x )  e.  CC )
233231, 232mulneg2d 10484 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( x  e.  RR+  /\  y  e.  RR+  /\  x  <  y
)  /\  t  e.  ( 0 (,) 1
) )  ->  (
t  x.  -u ( log `  x ) )  =  -u ( t  x.  ( log `  x
) ) )
234230, 233eqtrd 2656 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( x  e.  RR+  /\  y  e.  RR+  /\  x  <  y
)  /\  t  e.  ( 0 (,) 1
) )  ->  (
t  x.  ( ( w  e.  RR+  |->  -u ( log `  w ) ) `
 x ) )  =  -u ( t  x.  ( log `  x
) ) )
235 fveq2 6191 . . . . . . . . . . . . . . . . 17  |-  ( w  =  y  ->  ( log `  w )  =  ( log `  y
) )
236235negeqd 10275 . . . . . . . . . . . . . . . 16  |-  ( w  =  y  ->  -u ( log `  w )  = 
-u ( log `  y
) )
237236, 168, 227fvmpt3i 6287 . . . . . . . . . . . . . . 15  |-  ( y  e.  RR+  ->  ( ( w  e.  RR+  |->  -u ( log `  w ) ) `
 y )  = 
-u ( log `  y
) )
238196, 237syl 17 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( x  e.  RR+  /\  y  e.  RR+  /\  x  <  y
)  /\  t  e.  ( 0 (,) 1
) )  ->  (
( w  e.  RR+  |->  -u ( log `  w
) ) `  y
)  =  -u ( log `  y ) )
239238oveq2d 6666 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( x  e.  RR+  /\  y  e.  RR+  /\  x  <  y
)  /\  t  e.  ( 0 (,) 1
) )  ->  (
( 1  -  t
)  x.  ( ( w  e.  RR+  |->  -u ( log `  w ) ) `
 y ) )  =  ( ( 1  -  t )  x.  -u ( log `  y
) ) )
240211rpcnd 11874 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( x  e.  RR+  /\  y  e.  RR+  /\  x  <  y
)  /\  t  e.  ( 0 (,) 1
) )  ->  (
1  -  t )  e.  CC )
241197recnd 10068 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( x  e.  RR+  /\  y  e.  RR+  /\  x  <  y
)  /\  t  e.  ( 0 (,) 1
) )  ->  ( log `  y )  e.  CC )
242240, 241mulneg2d 10484 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( x  e.  RR+  /\  y  e.  RR+  /\  x  <  y
)  /\  t  e.  ( 0 (,) 1
) )  ->  (
( 1  -  t
)  x.  -u ( log `  y ) )  =  -u ( ( 1  -  t )  x.  ( log `  y
) ) )
243239, 242eqtrd 2656 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( x  e.  RR+  /\  y  e.  RR+  /\  x  <  y
)  /\  t  e.  ( 0 (,) 1
) )  ->  (
( 1  -  t
)  x.  ( ( w  e.  RR+  |->  -u ( log `  w ) ) `
 y ) )  =  -u ( ( 1  -  t )  x.  ( log `  y
) ) )
244234, 243oveq12d 6668 . . . . . . . . . . 11  |-  ( (
ph  /\  ( x  e.  RR+  /\  y  e.  RR+  /\  x  <  y
)  /\  t  e.  ( 0 (,) 1
) )  ->  (
( t  x.  (
( w  e.  RR+  |->  -u ( log `  w
) ) `  x
) )  +  ( ( 1  -  t
)  x.  ( ( w  e.  RR+  |->  -u ( log `  w ) ) `
 y ) ) )  =  ( -u ( t  x.  ( log `  x ) )  +  -u ( ( 1  -  t )  x.  ( log `  y
) ) ) )
245192recnd 10068 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( x  e.  RR+  /\  y  e.  RR+  /\  x  <  y
)  /\  t  e.  ( 0 (,) 1
) )  ->  (
t  x.  ( log `  x ) )  e.  CC )
246198recnd 10068 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( x  e.  RR+  /\  y  e.  RR+  /\  x  <  y
)  /\  t  e.  ( 0 (,) 1
) )  ->  (
( 1  -  t
)  x.  ( log `  y ) )  e.  CC )
247245, 246negdid 10405 . . . . . . . . . . 11  |-  ( (
ph  /\  ( x  e.  RR+  /\  y  e.  RR+  /\  x  <  y
)  /\  t  e.  ( 0 (,) 1
) )  ->  -u (
( t  x.  ( log `  x ) )  +  ( ( 1  -  t )  x.  ( log `  y
) ) )  =  ( -u ( t  x.  ( log `  x
) )  +  -u ( ( 1  -  t )  x.  ( log `  y ) ) ) )
248244, 247eqtr4d 2659 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  RR+  /\  y  e.  RR+  /\  x  <  y
)  /\  t  e.  ( 0 (,) 1
) )  ->  (
( t  x.  (
( w  e.  RR+  |->  -u ( log `  w
) ) `  x
) )  +  ( ( 1  -  t
)  x.  ( ( w  e.  RR+  |->  -u ( log `  w ) ) `
 y ) ) )  =  -u (
( t  x.  ( log `  x ) )  +  ( ( 1  -  t )  x.  ( log `  y
) ) ) )
249217, 224, 2483brtr4d 4685 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  RR+  /\  y  e.  RR+  /\  x  <  y
)  /\  t  e.  ( 0 (,) 1
) )  ->  (
( w  e.  RR+  |->  -u ( log `  w
) ) `  (
( t  x.  x
)  +  ( ( 1  -  t )  x.  y ) ) )  <  ( ( t  x.  ( ( w  e.  RR+  |->  -u ( log `  w ) ) `
 x ) )  +  ( ( 1  -  t )  x.  ( ( w  e.  RR+  |->  -u ( log `  w
) ) `  y
) ) ) )
250164, 169, 178, 249scvxcvx 24712 . . . . . . . 8  |-  ( (
ph  /\  ( u  e.  RR+  /\  v  e.  RR+  /\  s  e.  ( 0 [,] 1 ) ) )  ->  (
( w  e.  RR+  |->  -u ( log `  w
) ) `  (
( s  x.  u
)  +  ( ( 1  -  s )  x.  v ) ) )  <_  ( (
s  x.  ( ( w  e.  RR+  |->  -u ( log `  w ) ) `
 u ) )  +  ( ( 1  -  s )  x.  ( ( w  e.  RR+  |->  -u ( log `  w
) ) `  v
) ) ) )
251164, 169, 178, 1, 182, 2, 185, 250jensen 24715 . . . . . . 7  |-  ( ph  ->  ( ( (fld  gsumg  ( W  oF  x.  F ) )  /  (fld 
gsumg  W ) )  e.  RR+  /\  ( ( w  e.  RR+  |->  -u ( log `  w ) ) `
 ( (fld  gsumg  ( W  oF  x.  F ) )  /  (fld 
gsumg  W ) ) )  <_  ( (fld  gsumg  ( W  oF  x.  ( ( w  e.  RR+  |->  -u ( log `  w ) )  o.  F ) ) )  /  (fld  gsumg  W ) ) ) )
252251simprd 479 . . . . . 6  |-  ( ph  ->  ( ( w  e.  RR+  |->  -u ( log `  w
) ) `  (
(fld  gsumg  ( W  oF  x.  F ) )  / 
(fld  gsumg  W ) ) )  <_ 
( (fld 
gsumg  ( W  oF  x.  ( ( w  e.  RR+  |->  -u ( log `  w
) )  o.  F
) ) )  / 
(fld  gsumg  W ) ) )
253184oveq2d 6666 . . . . . . . 8  |-  ( ph  ->  ( (fld 
gsumg  ( W  oF  x.  F ) )  / 
(fld  gsumg  W ) )  =  ( (fld 
gsumg  ( W  oF  x.  F ) )  / 
1 ) )
254253fveq2d 6195 . . . . . . 7  |-  ( ph  ->  ( ( w  e.  RR+  |->  -u ( log `  w
) ) `  (
(fld  gsumg  ( W  oF  x.  F ) )  / 
(fld  gsumg  W ) ) )  =  ( ( w  e.  RR+  |->  -u ( log `  w
) ) `  (
(fld  gsumg  ( W  oF  x.  F ) )  / 
1 ) ) )
255147rpcnd 11874 . . . . . . . . 9  |-  ( ph  ->  (fld 
gsumg  ( W  oF  x.  F ) )  e.  CC )
256255div1d 10793 . . . . . . . 8  |-  ( ph  ->  ( (fld 
gsumg  ( W  oF  x.  F ) )  / 
1 )  =  (fld  gsumg  ( W  oF  x.  F
) ) )
257256fveq2d 6195 . . . . . . 7  |-  ( ph  ->  ( ( w  e.  RR+  |->  -u ( log `  w
) ) `  (
(fld  gsumg  ( W  oF  x.  F ) )  / 
1 ) )  =  ( ( w  e.  RR+  |->  -u ( log `  w
) ) `  (fld  gsumg  ( W  oF  x.  F ) ) ) )
258 fveq2 6191 . . . . . . . . . . 11  |-  ( w  =  (fld 
gsumg  ( W  oF  x.  F ) )  -> 
( log `  w
)  =  ( log `  (fld 
gsumg  ( W  oF  x.  F ) ) ) )
259258negeqd 10275 . . . . . . . . . 10  |-  ( w  =  (fld 
gsumg  ( W  oF  x.  F ) )  ->  -u ( log `  w
)  =  -u ( log `  (fld 
gsumg  ( W  oF  x.  F ) ) ) )
260259, 168, 227fvmpt3i 6287 . . . . . . . . 9  |-  ( (fld  gsumg  ( W  oF  x.  F
) )  e.  RR+  ->  ( ( w  e.  RR+  |->  -u ( log `  w
) ) `  (fld  gsumg  ( W  oF  x.  F ) ) )  =  -u ( log `  (fld 
gsumg  ( W  oF  x.  F ) ) ) )
261147, 260syl 17 . . . . . . . 8  |-  ( ph  ->  ( ( w  e.  RR+  |->  -u ( log `  w
) ) `  (fld  gsumg  ( W  oF  x.  F ) ) )  =  -u ( log `  (fld 
gsumg  ( W  oF  x.  F ) ) ) )
262137fveq2d 6195 . . . . . . . . 9  |-  ( ph  ->  ( log `  (fld  gsumg  ( W  oF  x.  F ) ) )  =  ( log `  (fld 
gsumg  ( F  oF  x.  W ) ) ) )
263262negeqd 10275 . . . . . . . 8  |-  ( ph  -> 
-u ( log `  (fld  gsumg  ( W  oF  x.  F ) ) )  =  -u ( log `  (fld 
gsumg  ( F  oF  x.  W ) ) ) )
264261, 263eqtrd 2656 . . . . . . 7  |-  ( ph  ->  ( ( w  e.  RR+  |->  -u ( log `  w
) ) `  (fld  gsumg  ( W  oF  x.  F ) ) )  =  -u ( log `  (fld 
gsumg  ( F  oF  x.  W ) ) ) )
265254, 257, 2643eqtrd 2660 . . . . . 6  |-  ( ph  ->  ( ( w  e.  RR+  |->  -u ( log `  w
) ) `  (
(fld  gsumg  ( W  oF  x.  F ) )  / 
(fld  gsumg  W ) ) )  = 
-u ( log `  (fld  gsumg  ( F  oF  x.  W ) ) ) )
266184oveq2d 6666 . . . . . . 7  |-  ( ph  ->  ( (fld 
gsumg  ( W  oF  x.  ( ( w  e.  RR+  |->  -u ( log `  w
) )  o.  F
) ) )  / 
(fld  gsumg  W ) )  =  ( (fld 
gsumg  ( W  oF  x.  ( ( w  e.  RR+  |->  -u ( log `  w
) )  o.  F
) ) )  / 
1 ) )
267 ringmnd 18556 . . . . . . . . . . 11  |-  (fld  e.  Ring  ->fld  e.  Mnd )
26871, 267ax-mp 5 . . . . . . . . . 10  |-fld  e.  Mnd
26972submid 17351 . . . . . . . . . 10  |-  (fld  e.  Mnd  ->  CC  e.  (SubMnd ` fld )
)
270268, 269mp1i 13 . . . . . . . . 9  |-  ( ph  ->  CC  e.  (SubMnd ` fld )
)
271 mulcl 10020 . . . . . . . . . . 11  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( x  x.  y
)  e.  CC )
272271adantl 482 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  CC  /\  y  e.  CC ) )  -> 
( x  x.  y
)  e.  CC )
273 rpcn 11841 . . . . . . . . . . . . 13  |-  ( x  e.  RR+  ->  x  e.  CC )
274273ssriv 3607 . . . . . . . . . . . 12  |-  RR+  C_  CC
275274a1i 11 . . . . . . . . . . 11  |-  ( ph  -> 
RR+  C_  CC )
2764, 275fssd 6057 . . . . . . . . . 10  |-  ( ph  ->  W : A --> CC )
277166recnd 10068 . . . . . . . . . . . . 13  |-  ( (
ph  /\  w  e.  RR+ )  ->  ( log `  w )  e.  CC )
278277negcld 10379 . . . . . . . . . . . 12  |-  ( (
ph  /\  w  e.  RR+ )  ->  -u ( log `  w )  e.  CC )
279278, 168fmptd 6385 . . . . . . . . . . 11  |-  ( ph  ->  ( w  e.  RR+  |->  -u ( log `  w
) ) : RR+ --> CC )
280 fco 6058 . . . . . . . . . . 11  |-  ( ( ( w  e.  RR+  |->  -u ( log `  w
) ) : RR+ --> CC 
/\  F : A --> RR+ )  ->  ( (
w  e.  RR+  |->  -u ( log `  w ) )  o.  F ) : A --> CC )
281279, 2, 280syl2anc 693 . . . . . . . . . 10  |-  ( ph  ->  ( ( w  e.  RR+  |->  -u ( log `  w
) )  o.  F
) : A --> CC )
282272, 276, 281, 1, 1, 48off 6912 . . . . . . . . 9  |-  ( ph  ->  ( W  oF  x.  ( ( w  e.  RR+  |->  -u ( log `  w ) )  o.  F ) ) : A --> CC )
283282, 1, 161fdmfifsupp 8285 . . . . . . . . 9  |-  ( ph  ->  ( W  oF  x.  ( ( w  e.  RR+  |->  -u ( log `  w ) )  o.  F ) ) finSupp 
0 )
28473, 151, 1, 270, 282, 283gsumsubmcl 18319 . . . . . . . 8  |-  ( ph  ->  (fld 
gsumg  ( W  oF  x.  ( ( w  e.  RR+  |->  -u ( log `  w
) )  o.  F
) ) )  e.  CC )
285284div1d 10793 . . . . . . 7  |-  ( ph  ->  ( (fld 
gsumg  ( W  oF  x.  ( ( w  e.  RR+  |->  -u ( log `  w
) )  o.  F
) ) )  / 
1 )  =  (fld  gsumg  ( W  oF  x.  (
( w  e.  RR+  |->  -u ( log `  w
) )  o.  F
) ) ) )
286 eqidd 2623 . . . . . . . . . 10  |-  ( ph  ->  ( w  e.  RR+  |->  -u ( log `  w
) )  =  ( w  e.  RR+  |->  -u ( log `  w ) ) )
287 fveq2 6191 . . . . . . . . . . 11  |-  ( w  =  ( F `  k )  ->  ( log `  w )  =  ( log `  ( F `  k )
) )
288287negeqd 10275 . . . . . . . . . 10  |-  ( w  =  ( F `  k )  ->  -u ( log `  w )  = 
-u ( log `  ( F `  k )
) )
2893, 138, 286, 288fmptco 6396 . . . . . . . . 9  |-  ( ph  ->  ( ( w  e.  RR+  |->  -u ( log `  w
) )  o.  F
)  =  ( k  e.  A  |->  -u ( log `  ( F `  k ) ) ) )
290289oveq2d 6666 . . . . . . . 8  |-  ( ph  ->  ( W  oF  x.  ( ( w  e.  RR+  |->  -u ( log `  w ) )  o.  F ) )  =  ( W  oF  x.  ( k  e.  A  |->  -u ( log `  ( F `  k ) ) ) ) )
291290oveq2d 6666 . . . . . . 7  |-  ( ph  ->  (fld 
gsumg  ( W  oF  x.  ( ( w  e.  RR+  |->  -u ( log `  w
) )  o.  F
) ) )  =  (fld 
gsumg  ( W  oF  x.  ( k  e.  A  |-> 
-u ( log `  ( F `  k )
) ) ) ) )
292266, 285, 2913eqtrd 2660 . . . . . 6  |-  ( ph  ->  ( (fld 
gsumg  ( W  oF  x.  ( ( w  e.  RR+  |->  -u ( log `  w
) )  o.  F
) ) )  / 
(fld  gsumg  W ) )  =  (fld  gsumg  ( W  oF  x.  (
k  e.  A  |->  -u ( log `  ( F `
 k ) ) ) ) ) )
293252, 265, 2923brtr3d 4684 . . . . 5  |-  ( ph  -> 
-u ( log `  (fld  gsumg  ( F  oF  x.  W ) ) )  <_  (fld  gsumg  ( W  oF  x.  ( k  e.  A  |->  -u ( log `  ( F `  k )
) ) ) ) )
294149, 163, 293lenegcon1d 10609 . . . 4  |-  ( ph  -> 
-u (fld 
gsumg  ( W  oF  x.  ( k  e.  A  |-> 
-u ( log `  ( F `  k )
) ) ) )  <_  ( log `  (fld  gsumg  ( F  oF  x.  W ) ) ) )
295130, 294eqbrtrrd 4677 . . 3  |-  ( ph  ->  ( log `  ( M  gsumg  ( F  oF  ^c  W ) ) )  <_  ( log `  (fld 
gsumg  ( F  oF  x.  W ) ) ) )
296127relogcld 24369 . . . 4  |-  ( ph  ->  ( log `  ( M  gsumg  ( F  oF  ^c  W ) ) )  e.  RR )
297 efle 14848 . . . 4  |-  ( ( ( log `  ( M  gsumg  ( F  oF  ^c  W ) ) )  e.  RR  /\  ( log `  (fld  gsumg  ( F  oF  x.  W ) ) )  e.  RR )  ->  ( ( log `  ( M  gsumg  ( F  oF  ^c  W ) ) )  <_  ( log `  (fld 
gsumg  ( F  oF  x.  W ) ) )  <-> 
( exp `  ( log `  ( M  gsumg  ( F  oF  ^c  W ) ) ) )  <_  ( exp `  ( log `  (fld  gsumg  ( F  oF  x.  W ) ) ) ) ) )
298296, 149, 297syl2anc 693 . . 3  |-  ( ph  ->  ( ( log `  ( M  gsumg  ( F  oF  ^c  W ) ) )  <_  ( log `  (fld 
gsumg  ( F  oF  x.  W ) ) )  <-> 
( exp `  ( log `  ( M  gsumg  ( F  oF  ^c  W ) ) ) )  <_  ( exp `  ( log `  (fld  gsumg  ( F  oF  x.  W ) ) ) ) ) )
299295, 298mpbid 222 . 2  |-  ( ph  ->  ( exp `  ( log `  ( M  gsumg  ( F  oF  ^c  W ) ) ) )  <_  ( exp `  ( log `  (fld  gsumg  ( F  oF  x.  W ) ) ) ) )
300127reeflogd 24370 . . 3  |-  ( ph  ->  ( exp `  ( log `  ( M  gsumg  ( F  oF  ^c  W ) ) ) )  =  ( M 
gsumg  ( F  oF  ^c  W )
) )
301300eqcomd 2628 . 2  |-  ( ph  ->  ( M  gsumg  ( F  oF  ^c  W ) )  =  ( exp `  ( log `  ( M  gsumg  ( F  oF  ^c  W ) ) ) ) )
302148reeflogd 24370 . . 3  |-  ( ph  ->  ( exp `  ( log `  (fld 
gsumg  ( F  oF  x.  W ) ) ) )  =  (fld  gsumg  ( F  oF  x.  W ) ) )
303302eqcomd 2628 . 2  |-  ( ph  ->  (fld 
gsumg  ( F  oF  x.  W ) )  =  ( exp `  ( log `  (fld 
gsumg  ( F  oF  x.  W ) ) ) ) )
304299, 301, 3033brtr4d 4685 1  |-  ( ph  ->  ( M  gsumg  ( F  oF  ^c  W ) )  <_  (fld  gsumg  ( F  oF  x.  W ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   _Vcvv 3200    \ cdif 3571    C_ wss 3574   (/)c0 3915   {csn 4177   class class class wbr 4653    |-> cmpt 4729    |` cres 5116    o. ccom 5118   -->wf 5884   -1-1-onto->wf1o 5887   ` cfv 5888  (class class class)co 6650    oFcof 6895   Fincfn 7955   CCcc 9934   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939    x. cmul 9941   +oocpnf 10071    < clt 10074    <_ cle 10075    - cmin 10266   -ucneg 10267    / cdiv 10684   RR+crp 11832   (,)cioo 12175   [,)cico 12177   [,]cicc 12178   sum_csu 14416   expce 14792   Basecbs 15857   ↾s cress 15858   0gc0g 16100    gsumg cgsu 16101   Mndcmnd 17294   MndHom cmhm 17333  SubMndcsubmnd 17334  SubGrpcsubg 17588    GrpHom cghm 17657   GrpIso cgim 17699  CMndccmn 18193  mulGrpcmgp 18489   Ringcrg 18547   CRingccrg 18548   DivRingcdr 18747  SubRingcsubrg 18776  ℂfldccnfld 19746  RRfldcrefld 19950   logclog 24301    ^c ccxp 24302
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-tpos 7352  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ioc 12180  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-fac 13061  df-bc 13090  df-hash 13118  df-shft 13807  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-limsup 14202  df-clim 14219  df-rlim 14220  df-sum 14417  df-ef 14798  df-sin 14800  df-cos 14801  df-pi 14803  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-mhm 17335  df-submnd 17336  df-grp 17425  df-minusg 17426  df-mulg 17541  df-subg 17591  df-ghm 17658  df-gim 17701  df-cntz 17750  df-cmn 18195  df-abl 18196  df-mgp 18490  df-ur 18502  df-ring 18549  df-cring 18550  df-oppr 18623  df-dvdsr 18641  df-unit 18642  df-invr 18672  df-dvr 18683  df-drng 18749  df-subrg 18778  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-cnfld 19747  df-refld 19951  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-lp 20940  df-perf 20941  df-cn 21031  df-cnp 21032  df-haus 21119  df-cmp 21190  df-tx 21365  df-hmeo 21558  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-xms 22125  df-ms 22126  df-tms 22127  df-cncf 22681  df-limc 23630  df-dv 23631  df-log 24303  df-cxp 24304
This theorem is referenced by:  amgmlemALT  42549  amgmw2d  42550
  Copyright terms: Public domain W3C validator