| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-rtrclrec | Structured version Visualization version Unicode version | ||
| Description: The reflexive, transitive closure of a relation constructed as the union of all finite exponentiations. (Contributed by Drahflow, 12-Nov-2015.) |
| Ref | Expression |
|---|---|
| df-rtrclrec |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | crtrcl 13795 |
. 2
| |
| 2 | vr |
. . 3
| |
| 3 | cvv 3200 |
. . 3
| |
| 4 | vn |
. . . 4
| |
| 5 | cn0 11292 |
. . . 4
| |
| 6 | 2 | cv 1482 |
. . . . 5
|
| 7 | 4 | cv 1482 |
. . . . 5
|
| 8 | crelexp 13760 |
. . . . 5
| |
| 9 | 6, 7, 8 | co 6650 |
. . . 4
|
| 10 | 4, 5, 9 | ciun 4520 |
. . 3
|
| 11 | 2, 3, 10 | cmpt 4729 |
. 2
|
| 12 | 1, 11 | wceq 1483 |
1
|
| Colors of variables: wff setvar class |
| This definition is referenced by: dfrtrclrec2 13797 rtrclreclem1 13798 rtrclreclem2 13799 rtrclreclem4 13801 |
| Copyright terms: Public domain | W3C validator |