MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfun3 Structured version   Visualization version   Unicode version

Theorem dfun3 3865
Description: Union defined in terms of intersection (De Morgan's law). Definition of union in [Mendelson] p. 231. (Contributed by NM, 8-Jan-2002.)
Assertion
Ref Expression
dfun3  |-  ( A  u.  B )  =  ( _V  \  (
( _V  \  A
)  i^i  ( _V  \  B ) ) )

Proof of Theorem dfun3
StepHypRef Expression
1 dfun2 3859 . 2  |-  ( A  u.  B )  =  ( _V  \  (
( _V  \  A
)  \  B )
)
2 dfin2 3860 . . . 4  |-  ( ( _V  \  A )  i^i  ( _V  \  B ) )  =  ( ( _V  \  A )  \  ( _V  \  ( _V  \  B ) ) )
3 ddif 3742 . . . . 5  |-  ( _V 
\  ( _V  \  B ) )  =  B
43difeq2i 3725 . . . 4  |-  ( ( _V  \  A ) 
\  ( _V  \ 
( _V  \  B
) ) )  =  ( ( _V  \  A )  \  B
)
52, 4eqtr2i 2645 . . 3  |-  ( ( _V  \  A ) 
\  B )  =  ( ( _V  \  A )  i^i  ( _V  \  B ) )
65difeq2i 3725 . 2  |-  ( _V 
\  ( ( _V 
\  A )  \  B ) )  =  ( _V  \  (
( _V  \  A
)  i^i  ( _V  \  B ) ) )
71, 6eqtri 2644 1  |-  ( A  u.  B )  =  ( _V  \  (
( _V  \  A
)  i^i  ( _V  \  B ) ) )
Colors of variables: wff setvar class
Syntax hints:    = wceq 1483   _Vcvv 3200    \ cdif 3571    u. cun 3572    i^i cin 3573
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581
This theorem is referenced by:  difundi  3879  unvdif  4042
  Copyright terms: Public domain W3C validator